Parameters - Viewshed exposure and impact

Table 1. Settings for r.viewshed.exposure, default values are used for the other parameters.

Variable

Description

Value range

Value used

input

Digital elevation map, in this study a DSM-DTM raster map is used.

%municipality%_dsmdtm_1m_utmxx.tif

output

Viewshed exposure output raster map

%municipality%_viewshed_exposure_1m_utmxx.tif

source

Exposure source, in this study a tree crown raster map is used (1 = crown coverage, NA = no crown coverage)

%municipality%_tree_crown_mask_1m_utmxx.tif

range

Maximum viewshed radius

>= 0.0

100m

function

Viewshed parametrisation function

None, Binary, Distance decay, Visual magnitude, Solid angle

Distance decay

sample_density

Density of sampling points

0.0 – 100.0

25

seed

Random seed

>= 0

1

memory

Amount of memory to use in MB

>= 1MB

200000

nprocs

Number of cores to parallelise r.viewshed.exposure

>= 1

40

example command

r.viewshed.exposure.py input=dsmdtm_1m_utm32_flt@oslo output=visual_exposure_1m_utm32 source=treecrown_1m_utm32_int@oslo range=100 function=Distance_decay sample_density=25 seed=1 memory=200000 nprocs=40

Table 2. Settings for r.viewshed.impact, default values are used for the other parameters. Note that r.viewshed.impact is ran 3 times. Round 1: open space as weight layer, Round 2: open public space as weight layer and, Round 3: open private space as weight layer.

Variable

Description

Value range

Value used

exposure

Exposure source locations, in this study the tree crown polygons are used.

%municipality%_treecrowns_utmxx.shp

column

Name of attribute column to store visual impact values

  • v_open,

  • v_public

  • v_private

dsm

Digital elevation map, in this study a DSM-DTM raster map is used.

%municipality%_dsmdtm_1m_utmxx.tif

weight

Input weights raster map

  • %municipality%_open_space_1m_utmxx.tif

  • %municipality%_public_space_1m_utmxx.tif

  • %municipality%_private_space_1m_utmxx.tif

range

Maximum viewshed radius

>= 0.0

100m

function

Viewshed parametrisation function

None, Binary, Distance decay, Visual magnitude, Solid angle

Distance decay

sample_density

Density of sampling points

0.0 – 100.0

25

seed

Random seed

>= 0

1

memory

Amount of memory to use in MB

>= 1MB

200000

cores_e

Number of cores to parallelise r.viewshed.exposure

>= 1

40

cores_i

Number of cores to parallelise r.viewshed.impact

>= 1

40

example command

r.viewshed.impact.py exposure=treecrowns@impact column=v_public dsm=dsmdtm_1m_utm32_flt@impact weight=public_space_1m_utm32_int@oslo_impact Range=100 seed=1 memory=200000 cores_e=10 cores_i=20

References

  • Cimburova, Z. and Blumentrath, S., 2022. Viewshed-based modelling of visual exposure to urban greenery – An efficient GIS tool for practical planning applications. Landscape and Urban Planning, Volume 222,104395. https://doi.org/10.1016/j.landurbplan.2022.104395

  • Cimburova, Z., Blumentrath, S., Barton, D.N., 2023. Making trees visible: A GIS method and tool for modelling visibility in the valuation of urban trees. Urban Forestry & Urban Greening 81, 127839. https://doi.org/10.1016/j.ufug.2023.127839