Parameters - Viewshed exposure and impact¶
Variable |
Description |
Value range |
Value used |
---|---|---|---|
input |
Digital elevation map, in this study a DSM-DTM raster map is used. |
%municipality%_dsmdtm_1m_utmxx.tif |
|
output |
Viewshed exposure output raster map |
%municipality%_viewshed_exposure_1m_utmxx.tif |
|
source |
Exposure source, in this study a tree crown raster map is used (1 = crown coverage, NA = no crown coverage) |
%municipality%_tree_crown_mask_1m_utmxx.tif |
|
range |
Maximum viewshed radius |
>= 0.0 |
100m |
function |
Viewshed parametrisation function |
None, Binary, Distance decay, Visual magnitude, Solid angle |
Distance decay |
sample_density |
Density of sampling points |
0.0 – 100.0 |
25 |
seed |
Random seed |
>= 0 |
1 |
memory |
Amount of memory to use in MB |
>= 1MB |
200000 |
nprocs |
Number of cores to parallelise r.viewshed.exposure |
>= 1 |
40 |
example command |
r.viewshed.exposure.py input=dsmdtm_1m_utm32_flt@oslo output=visual_exposure_1m_utm32 source=treecrown_1m_utm32_int@oslo range=100 function=Distance_decay sample_density=25 seed=1 memory=200000 nprocs=40 |
Variable |
Description |
Value range |
Value used |
---|---|---|---|
exposure |
Exposure source locations, in this study the tree crown polygons are used. |
%municipality%_treecrowns_utmxx.shp |
|
column |
Name of attribute column to store visual impact values |
|
|
dsm |
Digital elevation map, in this study a DSM-DTM raster map is used. |
%municipality%_dsmdtm_1m_utmxx.tif |
|
weight |
Input weights raster map |
|
|
range |
Maximum viewshed radius |
>= 0.0 |
100m |
function |
Viewshed parametrisation function |
None, Binary, Distance decay, Visual magnitude, Solid angle |
Distance decay |
sample_density |
Density of sampling points |
0.0 – 100.0 |
25 |
seed |
Random seed |
>= 0 |
1 |
memory |
Amount of memory to use in MB |
>= 1MB |
200000 |
cores_e |
Number of cores to parallelise r.viewshed.exposure |
>= 1 |
40 |
cores_i |
Number of cores to parallelise r.viewshed.impact |
>= 1 |
40 |
example command |
r.viewshed.impact.py exposure=treecrowns@impact column=v_public dsm=dsmdtm_1m_utm32_flt@impact weight=public_space_1m_utm32_int@oslo_impact Range=100 seed=1 memory=200000 cores_e=10 cores_i=20 |
References
Cimburova, Z. and Blumentrath, S., 2022. Viewshed-based modelling of visual exposure to urban greenery – An efficient GIS tool for practical planning applications. Landscape and Urban Planning, Volume 222,104395. https://doi.org/10.1016/j.landurbplan.2022.104395
Cimburova, Z., Blumentrath, S., Barton, D.N., 2023. Making trees visible: A GIS method and tool for modelling visibility in the valuation of urban trees. Urban Forestry & Urban Greening 81, 127839. https://doi.org/10.1016/j.ufug.2023.127839