Total mengde nedbør (mm) i perioden Mai - Oktober.
# Set up for parallel run
UseCores = 12
cl = makeCluster(UseCores)
registerDoParallel(cl)
# List files in R:/ directory (daily data; rr = precipitation)
setwd("/home/NINA.NO/markus.israelsen/Mounts/")
AllFilesInRR = list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/rr",full.names = TRUE, pattern = ".bil$")
# Define years (1957 - 2020)
uniq_y = c(1957:2020)
# Define months
uniq_m = c("05", "06", "07", "08", "09", "10") # May - October
# Subsetting the dataset by selecting only the months we are interested in (all years)
SampleMonths = foreach(i = 1:length(AllFilesInRR), .combine = c) %dopar% {
if((substring(AllFilesInRR[i], first = nchar(AllFilesInRR[i])-8, last = nchar(AllFilesInRR[i])-7)) %in% uniq_m){ # if the month in line "i" is one of the months we are interested in, append that line to SampleMonths
AllFilesInRR[i]
}
}
# Summing the amount of precipitation for each year
sumPrecip_all_years = list()
sumPrecip_all_years = foreach(i = 1:length(uniq_y), .packages = c("doParallel", "raster")) %dopar% {
sumPrecip_all_years = stack(SampleMonths[grepl(paste("rr", uniq_y[i], sep = "_"), SampleMonths, fixed = TRUE)])
sumPrecip_year = list() # New code
sumPrecip_year = foreach(j = 1:nlayers(sumPrecip_all_years), .packages = c("doParallel", "raster")) %dopar% {
rs = raster(sumPrecip_all_years, layer = j)
rs[rs > 0] = rs[rs > 0] / 10
sumPrecip_year[[j]] = rs
}
sumPrecip_all_years[[i]] = stackApply(stack(sumPrecip_year), c(1), fun = sum)
}
# Stacking the years to one raster stack
sumPrecip_all_years = stack(sumPrecip_all_years)
names(sumPrecip_all_years) = uniq_y # Name by years
# Rasterstack directory;
RasterLocation <- paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", paste(paste("rr_sum_", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"),".grd", sep = ""), sep = "")
# Write raster
writeRaster(sumPrecip_all_years, RasterLocation, format="raster", overwrite = TRUE)
stopImplicitCluster()
Antall dager med nedbør i perioden Mai - Oktober.
# Set up for parallel run
UseCores = 12
cl = makeCluster(UseCores)
registerDoParallel(cl)
# List files in R:/ directory (daily data; rr = precipitation)
setwd("/home/NINA.NO/markus.israelsen/Mounts/")
AllFilesInRR = list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/rr",full.names = TRUE, pattern = ".bil$")
# Define years (1957 - 2020)
uniq_y = c(1957:2020)
# Define months
uniq_m = c("05", "06", "07", "08", "09", "10") # May - October
# Subsetting the dataset by selecting only the months we are interested in (all years)
SampleMonths = foreach(i = 1:length(AllFilesInRR), .combine = c) %dopar% {
if((substring(AllFilesInRR[i], first = nchar(AllFilesInRR[i])-8, last = nchar(AllFilesInRR[i])-7)) %in% uniq_m){ # if the month in line "i" is one of the months we are interested in, append that line to SampleMonths
AllFilesInRR[i]
}
}
# Summing the days with precipitation for each year
daysPrecip_all_years = list()
daysPrecip_all_years = foreach(i = 1:length(uniq_y), .packages = c("doParallel", "raster")) %dopar% {
daysPrecip_year = stack(SampleMonths[grepl(paste("rr", uniq_y[i], sep = "_"), SampleMonths, fixed = TRUE)])
daysPrecip = list()
daysPrecip = foreach(j = 1:nlayers(daysPrecip_year), .packages = c("doParallel", "raster")) %dopar% {
r = raster(daysPrecip_year, layer = j)
r[r > 0] = 1
daysPrecip[[j]] = r
}
daysPrecip_all_years[[i]] = stackApply(stack(daysPrecip), c(1), fun = sum)
}
# Stacking the years to one raster stack
daysPrecip_all_years = stack(daysPrecip_all_years)
names(daysPrecip_all_years) = uniq_y # Name by years
# Rasterstack directory; change
RasterLocation <- paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", paste(paste("rr_days_", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"),".grd", sep = ""), sep = "")
# Write raster
writeRaster(daysPrecip_all_years, RasterLocation, format="raster", overwrite = TRUE)
stopImplicitCluster()
Gjennomsnittlig sommertemperatur, \(^\circ\)C (Juni - Aug.).
# Set up for parallel run
UseCores = 12
cl = makeCluster(UseCores)
registerDoParallel(cl)
# List files in R:/ directory (daily data; tm = temperature)
setwd("/home/NINA.NO/markus.israelsen/Mounts/")
AllFilesInTM <- list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/tm",full.names = TRUE, pattern = ".bil$")
# Define years
uniq_y <- c(1957:2020)
# Define months
uniq_m <- c("06", "07", "08") # July - August
SampleMonths = foreach(i = 1:length(AllFilesInTM), .combine = c, .packages = c("doParallel", "raster")) %dopar% {
if((substring(AllFilesInTM[i], first = nchar(AllFilesInTM[i])-8, last = nchar(AllFilesInTM[i])-7)) %in% uniq_m){ # if the month in line "i" is one of the months we are interested in, append that line to SampleMonths
AllFilesInTM[i]
}
}
meanSummer_all_years = list()
meanSummer_all_years = foreach(i = 1:length(uniq_y), .packages = c("doParallel", "raster")) %dopar% {
meanSummer_years = stack(SampleMonths[grepl(paste("tm", uniq_y[i], sep = "_"), SampleMonths, fixed = TRUE)])
meanSummer_year = list()
meanSummer_year = foreach(j = 1:nlayers(meanSummer_years), .packages = c("doParallel", "raster")) %dopar% {
ms = raster(meanSummer_years, layer = j)
ms[ms > 0] = (ms[ms > 0] - 2731) / 10 # convert from 1/10 kelvin to degrees centigrade
meanSummer_year[[j]] = ms
}
meanSummer_all_years[[i]] = stackApply(stack(meanSummer_year), c(1), fun = mean)
}
# Stacking the years to one raster stack
meanSummer_all_years = stack(meanSummer_all_years)
names(meanSummer_all_years) = uniq_y # Name by years
# Rasterstack directory; change
RasterLocation <- paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/",
paste(paste("tm_summer_", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"),".grd", sep = ""), sep = "")
# Write raster
writeRaster(meanSummer_all_years, RasterLocation, format="raster", overwrite = TRUE)
stopImplicitCluster()
Gjennomsnittlig vintertemperatur, \(^\circ\)C (Des. - Feb.).
# Set up for parallel run
UseCores = 12
cl = makeCluster(UseCores)
registerDoParallel(cl)
# List files in R:/ directory (daily data; tm = temperature)
setwd("/home/NINA.NO/markus.israelsen/Mounts/")
AllFilesInTM <- list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/tm",full.names = TRUE, pattern = ".bil$")
# Define years
uniq_y <- c(1957:2020)
# Calculating the mean winter temperature for each year
uniq_mw = c("12", "01", "02") # Define months for winter
# Subsetting the dataset by selecting only the months we are interested in (all years)
SampleMonths = foreach(i = 1:length(AllFilesInTM), .combine = c, .packages = c("doParallel", "raster")) %dopar% {
if((substring(AllFilesInTM[i], first = nchar(AllFilesInTM[i])-8, last = nchar(AllFilesInTM[i])-7)) %in% uniq_mw){ # if the month in line "i" is one of the months we are interested in, append that line to SampleMonths
AllFilesInTM[i]
}
}
meanWinter_all_years = list()
meanWinter_all_years = foreach(i = 2:length(uniq_y), .packages = c("doParallel", "raster", "rlist")) %dopar% {
meanWinter_years = SampleMonths[grep(paste("tm", uniq_y[i]-1, 12, sep = "_"), SampleMonths)]
meanWinter_years = list.append(meanWinter_years, SampleMonths[grep(paste("tm", uniq_y[i], uniq_mw[2], sep = "_"), SampleMonths)], SampleMonths[grep(paste("tm", uniq_y[i], uniq_mw[3], sep = "_"), SampleMonths)])
meanWinter_years = stack(meanWinter_years)
meanWinter_year = list()
meanWinter_year = foreach(j = 1:nlayers(meanWinter_years), .packages = c("doParallel", "raster")) %dopar% {
mw = raster(meanWinter_years, layer = j)
mw[mw > 0] = (mw[mw > 0] - 2731) / 10 # convert from 1/10 kelvin to degrees centigrade
meanWinter_year[[j]] = mw
}
meanWinter_all_years[[i-1]] = stackApply(stack(meanWinter_year), c(1), fun = mean)
}
# Stacking the years to one raster stack
meanWinter_all_years = stack(meanWinter_all_years)
layerNames = c()
for(i in 1:length(uniq_y)){
layerNames = append(layerNames,
paste(substring(uniq_y[i], first = nchar(uniq_y[i])-1, last = nchar(uniq_y[i])), substring(uniq_y[i+1], first = nchar(uniq_y[i+1])-1, last = nchar(uniq_y[i+1])), sep = "-"))
}
layerNames = layerNames[1:(length(uniq_y)-1)]
names(meanWinter_all_years) = layerNames # Name by years
# Rasterstack directory; change
RasterLocation <- paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/",
paste(paste("tm_winter_", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"),".grd", sep = ""), sep = "")
# Write raster
writeRaster(meanWinter_all_years, RasterLocation, format="raster", overwrite = TRUE)
stopImplicitCluster()
Antall dager med snødekke i perioden Oktober - Juni.
# Set up for parallel run
UseCores = 12
cl = makeCluster(UseCores)
registerDoParallel(cl)
# List files in R:/ directory (daily data; rr = precipitation)
setwd("/home/NINA.NO/markus.israelsen/Mounts/")
AllFilesInSD = list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/sd",full.names = TRUE, pattern = ".bil$")
# Define years
uniq_y = c(1957:2020)
# Define months
uniq_m = c("10", "11", "12", "01", "02", "03", "04", "05", "06") # Oct - June (Data starts in Sept 1957, should therefore start at i = 2 with mean of Oct 1957+Jan 58+Feb 58+Mar 58+Apr 58+May 58+June 58)
# Subsetting the dataset by selecting only the months we are interested in (all years)
SampleMonths = foreach(i = 1:length(AllFilesInSD), .combine = c, .packages = c("doParallel", "raster")) %dopar% {
if((substring(AllFilesInSD[i], first = nchar(AllFilesInSD[i])-8, last = nchar(AllFilesInSD[i])-7)) %in% uniq_m){ # if the month in line "i" is one of the months we are interested in, append that line to SampleMonths
AllFilesInSD[i]
}
}
# Calculating the number of days with snow cover for each year
daysSnowCover_all_years = list()
daysSnowCover_all_years = foreach(i = 2:length(uniq_y), .packages = c("doParallel","raster", "rlist")) %dopar% {
# if (i == 1){
# daysSnowCover_year = SampleMonths[grepl(paste("sd", uniq_y[i], sep = "_"), SampleMonths, fixed = TRUE)]
# daysSnowCover_year = list.append(daysSnowCover_year, SampleMonths[grepl(paste("sd", uniq_y[i+1], uniq_m[4], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i+1], uniq_m[5], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i+1], uniq_m[6], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i+1], uniq_m[7], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i+1], uniq_m[8], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i+1], uniq_m[9], sep = "_"), SampleMonths, fixed = TRUE)])
# daysSnowCover_year = stack(daysSnowCover_year)
# daysSnowCover = list()
# daysSnowCover = foreach(j = 1:nlayers(daysSnowCover_year), .packages = c("doParallel","raster")) %dopar% {
# r = raster(daysSnowCover_year, layer = j)
# r[r > 0] = 1
# daysSnowCover[[j]] = r
# }
# daysSnowCover_all_years[[i]] = stackApply(stack(daysSnowCover), c(1), fun = sum)
# }
daysSnowCover_year = SampleMonths[grepl(paste("sd", uniq_y[i]-1, 12, sep = "_"), SampleMonths, fixed = TRUE)
| grepl(paste("sd", uniq_y[i]-1, 11, sep = "_"), SampleMonths, fixed = TRUE)
| grepl(paste("sd", uniq_y[i]-1, 10, sep = "_"), SampleMonths, fixed = TRUE)]
daysSnowCover_year = list.append(daysSnowCover_year, SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[4], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[5], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[6], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[7], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[8], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[9], sep = "_"), SampleMonths, fixed = TRUE)])
daysSnowCover_year = stack(daysSnowCover_year)
daysSnowCover = list()
daysSnowCover = foreach(j = 1:nlayers(daysSnowCover_year), .packages = c("doParallel","raster")) %dopar% {
r = raster(daysSnowCover_year, layer = j)
r[r > 0] = 1
daysSnowCover[[j]] = r
}
daysSnowCover_all_years[[i-1]] = stackApply(stack(daysSnowCover), c(1), fun = sum)
}
# Stacking the years to one raster stack
daysSnowCover_all_years = stack(daysSnowCover_all_years)
layerNames = c()
for(i in 1:length(uniq_y)){
layerNames = append(layerNames, paste(substring(uniq_y[i], first = nchar(uniq_y[i])-1, last = nchar(uniq_y[i])), substring(uniq_y[i+1], first = nchar(uniq_y[i+1])-1, last = nchar(uniq_y[i+1])), sep="-"))
}
layerNames = layerNames[1:(length(uniq_y)-1)]
names(daysSnowCover_all_years) = layerNames # Name by years
# Rasterstack directory;
RasterLocation <- paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", paste(paste("sd_s", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"),".grd", sep = ""), sep = "")
# Write raster
writeRaster(daysSnowCover_all_years, RasterLocation, format="raster", overwrite = TRUE)
stopImplicitCluster()
# if(SimpleOrComplex == "Complex"){
#
# # Temperature
# AllFilesInTM <- list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/tm",full.names = TRUE, pattern = ".bil$")
#
# SampleMonthsTemp = foreach(i = 1:length(AllFilesInTM), .combine = c, .packages = c("doParallel", "raster")) %dopar% {
# if((substring(AllFilesInTM[i], first = nchar(AllFilesInTM[i])-8, last = nchar(AllFilesInTM[i])-7)) %in% uniq_m){
# AllFilesInTM[i]
# }
# }
#
# SnowTempCover_all_years = list()
#
# SnowTempCover_all_years = foreach(i = 1:length(uniq_y), .packages = c("doParallel", "raster", "rlist")) %dopar% {
# if (i == 1){
# SnowRaster = SampleMonths[grepl(paste("sd", uniq_y[i], sep = "_"), SampleMonths, fixed = TRUE)]
# TempRaster = SampleMonthsTemp[grepl(paste("tm", uniq_y[i], sep = "_"), SampleMonthsTemp, fixed = TRUE)]
# SnowRaster = stack(SnowRaster)
# TempRaster = stack(TempRaster)
#
# SnowTempCover = list()
#
# SnowTempCover = foreach(j = 1:nlayers(SnowRaster), .packages = c("doParallel", "raster")) %dopar% {
# r = raster(SnowRaster, layer = j)
#
# k = raster(TempRaster, layer = j)
#
# TempRows = which(k[] > 2731)
# SnowRows = which(r[] > 0)
#
# if(length(TempRows) >= length(SnowRows)){
# TempSnowRows = which(SnowRows %in% TempRows)
# r[][SnowRows[TempSnowRows]] = -1337
# r[r != -1337] = 0
# r[r == -1337] = 1
# }
# else {
# TempSnowRows = which(TempRows %in% SnowRows)
# r[][TempRows[TempSnowRows]] = -1337
# r[r != -1337] = 0
# r[r == -1337] = 1
# }
#
# SnowTempCover[[j]] = r
# }
# SnowTempCover_all_years[[i]] = stackApply(stack(SnowTempCover), c(1), fun = sum)
# }
#
# else if(i > 1) {
# SnowRaster = SampleMonths[grepl(paste("sd", uniq_y[i]-1, 12, sep = "_"), SampleMonths, fixed = TRUE)]
# SnowRaster = list.append(SnowRaster, SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[2], sep = "_"), SampleMonths, fixed = TRUE)], .data = SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[4], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[3], sep = "_"), SampleMonths, fixed = TRUE)])
# TempRaster = SampleMonthsTemp[grepl(paste("tm", uniq_y[i]-1, 12, sep = "_"), SampleMonthsTemp, fixed = TRUE)]
# TempRaster = list.append(TempRaster, SampleMonthsTemp[grepl(paste("tm", uniq_y[i], uniq_m[2], sep = "_"), SampleMonthsTemp, fixed = TRUE)], SampleMonthsTemp[grepl(paste("tm", uniq_y[i], uniq_m[3], sep = "_"), SampleMonthsTemp, fixed = TRUE)], SampleMonthsTemp[grepl(paste("tm", uniq_y[i], uniq_m[4], sep = "_"), SampleMonthsTemp, fixed = TRUE)])
# SnowRaster = stack(SnowRaster)
# TempRaster = stack(TempRaster)
#
# SnowTempCover = list()
#
# SnowTempCover = foreach(j = 1:nlayers(SnowRaster), .packages = c("doParallel", "raster")) %dopar% {
# r = raster(SnowRaster, layer = j)
#
# k = raster(TempRaster, layer = j)
#
# TempRows = which(k[] > 2731)
# SnowRows = which(r[] > 0)
#
# if(length(TempRows) >= length(SnowRows)){
# TempSnowRows = which(SnowRows %in% TempRows)
# r[][SnowRows[TempSnowRows]] = -1337 # random variable value
# r[r != -1337] = 0
# r[r == -1337] = 1
# }
# else {
# TempSnowRows = which(TempRows %in% SnowRows)
# r[][TempRows[TempSnowRows]] = -1337
# r[r != -1337] = 0
# r[r == -1337] = 1
# }
#
# SnowTempCover[[j]] = r
# }
# SnowTempCover_all_years[[i]] = stackApply(stack(SnowTempCover), c(1), fun = sum)
# }
# }
#
# SnowTempCover_all_years = stack(SnowTempCover_all_years)
#
# names(SnowTempCover_all_years) = uniq_y # Name by years
#
# # Rasterstack directory
# RasterLocation = paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/M/Klima/All years 1957 - 2020/Days Snow Cover Condition on Temperature/", paste(paste("sd_c", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"), ".grd", sep = ""), sep = "")
#
# # Write Raster
# writeRaster(SnowTempCover_all_years, RasterLocation, format = "raster", overwrite = TRUE)
# }
Vekstsesongens lengde i antall dager (uten snødekke og døgntemp. > 5\(^\circ\)C).
# Set up for parallel run
UseCores = 12
cl = makeCluster(UseCores)
registerDoParallel(cl)
# Snow cover
AllFilesInSD = list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/sd", full.names = TRUE, pattern = ".bil$")
# Define years
uniq_y = c(1957:2020)
SampleDataSnow = AllFilesInSD[grepl(paste("sd_", uniq_y[1], sep=""), AllFilesInSD, fixed = TRUE)]
for(i in 2:length(uniq_y)){
SampleDataSnow = list.append(SampleDataSnow, AllFilesInSD[grepl(paste("sd_", uniq_y[i], sep=""), AllFilesInSD, fixed = TRUE)])
}
# Temperature
AllFilesInTM <- list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/tm", full.names = TRUE, pattern = ".bil$")
SampleDataTemp = AllFilesInTM[grepl(paste("tm_", uniq_y[1], sep = ""), AllFilesInTM, fixed = TRUE)]
for(i in 2:length(uniq_y)){
SampleDataTemp = list.append(SampleDataTemp, AllFilesInTM[grepl(paste("tm_", uniq_y[i], sep = ""), AllFilesInTM, fixed = TRUE)])
}
rm(AllFilesInTM)
GrowthSeason_all_years = list()
GrowthSeason_all_years = foreach(i = 1:length(uniq_y), .packages = c("doParallel", "raster", "rlist")) %dopar% {
SnowRaster = list()
TempRaster = list()
SnowRaster[[i]] = stack(SampleDataSnow[grep(paste("sd_", uniq_y[i], sep=""), SampleDataSnow)])
TempRaster[[i]] = stack(SampleDataTemp[grep(paste("tm_", uniq_y[i], sep=""), SampleDataTemp)])
SnowTempCover = list()
SnowTempCover = foreach(j = 1:nlayers(SnowRaster[[i]]), .packages = c("doParallel", "raster")) %dopar% {
r = raster(SnowRaster[[i]], layer = j)
k = raster(TempRaster[[i]], layer = j)
r_values = values(r)
k_values = values(k)
k_values_rows = which(k_values >= 2781)
test_val = r_values[k_values_rows]
test_val = which(test_val != 0)
if(length(test_val) > 0){
k_values_rows = k_values_rows[-test_val]
}
r_values[k_values_rows] = -1337
r_values[r_values != -1337] = 0
r_values[r_values == -1337] = 1
values(r) = r_values
SnowTempCover[[j]] = r
# TempRows = which(k[] >= 2781)
# SnowRows = which(r[] == 0)
#
# if(length(TempRows) >= length(SnowRows)){
# TempSnowRows = which(SnowRows %in% TempRows)
# r[][SnowRows[TempSnowRows]] = -1337
# r[r != -1337] = 0
# r[r == -1337] = 1
# }
#
# else {
# TempSnowRows = which(TempRows %in% SnowRows)
# r[][TempRows[TempSnowRows]] = -1337
# r[r != -1337] = 0
# r[r == -1337] = 1
# }
SnowTempCover[[j]] = r
}
GrowthSeason_all_years[[i]] = stackApply(stack(SnowTempCover), c(1), fun = sum)
}
GrowthSeason_all_years = stack(GrowthSeason_all_years)
names(GrowthSeason_all_years) = uniq_y # Name by years
# Rasterstack directory
RasterLocation = paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", paste(paste("sd_gw", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"), ".grd", sep = ""), sep = "")
# Write Raster
writeRaster(GrowthSeason_all_years, RasterLocation, format = "raster", overwrite = TRUE)
stopImplicitCluster()
Total mengde nedbør (mm) for dager med temperatur > 2\(^\circ\)C i perioden Januar - Mars.
rm(list = ls())
# Set up for parallel run, more efficient
UseCores = 12
cl = makeCluster(UseCores)
registerDoParallel(cl)
# List files in R:/ directory (daily data; rr = precipitation)
WD = getwd()
setwd("/home/NINA.NO/markus.israelsen/Mounts/")
AllFilesInRR = list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/rr",full.names = TRUE, pattern = ".bil$")
AllFilesInRR = AllFilesInRR[-grep("arome", AllFilesInRR)] # remove the two obs that are written as "arome06_rr_2015_11_20.bil" (duplicated with the two that are written normally "rr_2015_11_20.bil")
# Define years
uniq_y = c(1957:2020)
# Define months
uniq_m = c("01", "02", "03")
# Subsetting the precipitation dataset by selecting only the months we are interested in (all years)
SampleMonths = foreach(i = 1:length(AllFilesInRR), .combine = c, .packages = c("doParallel", "raster")) %dopar% {
if((substring(AllFilesInRR[i], first = nchar(AllFilesInRR[i])-8, last = nchar(AllFilesInRR[i])-7)) %in% uniq_m){ # if the month in line "i" is one of the months we are interested in, append that line to SampleMonths
AllFilesInRR[i]
}
}
# Get the temperature data
AllFilesInTM <- list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/tm",full.names = TRUE, pattern = ".bil$")
# Subsetting the temperature dataset by selecting only the months we are interested in (all years)
SampleMonthsTemp = foreach(i = 1:length(AllFilesInTM), .combine = c, .packages = c("doParallel", "raster")) %dopar% {
if((substring(AllFilesInTM[i], first = nchar(AllFilesInTM[i])-8, last = nchar(AllFilesInTM[i])-7)) %in% uniq_m){
AllFilesInTM[i]
}
}
rm(AllFilesInTM) # Remove the full temperature dataset from memory as it is quite big and is not needed anymore
#
RainTempCover_all_years = list()
RainTempCover_all_years = foreach(i = 1:length(uniq_y), .packages = c("doParallel", "raster", "rlist")) %dopar% {
RainRaster = list()
TempRaster = list()
RainRaster[[i]] = stack(SampleMonths[grep(paste("rr_",uniq_y[i], sep=""), SampleMonths)])
TempRaster[[i]] = stack(SampleMonthsTemp[grep(paste("tm_",uniq_y[i],sep=""), SampleMonthsTemp)])
RainTempCover = list()
RainTempCover = foreach(j = 1:nlayers(RainRaster[[i]]), .packages = c("doParallel", "raster")) %dopar% {
r = raster(RainRaster[[i]], layer = j)
r_values = values(r)
k = raster(TempRaster[[i]], layer = j)
k_values = values(k)
k_values_rows = which(k_values <= 2751.5)
r_values[k_values_rows] = NA
values(r) = r_values
RainTempCover[[j]] = r
}
RainTempCover_all_years[[i]] = stackApply(stack(RainTempCover), c(1), fun = sum) # Sum the amount of precipitation per year (Jan. - March)
}
WinterRain_all_years = stack(RainTempCover_all_years)
names(WinterRain_all_years) = uniq_y # Name by years
# Rasterstack directory
RasterLocation = paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", paste(paste("sd_vr", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"), ".grd", sep = ""), sep = "")
# Write Raster
writeRaster(WinterRain_all_years, RasterLocation, format = "raster", overwrite = TRUE)
stopImplicitCluster()
Gjennomsnittlig snødybde (mm) i perioden Desember - Mai.
# Set up for parallel run
rm(list = ls())
UseCores = 12
cl = makeCluster(UseCores)
registerDoParallel(cl)
# List files in R:/ directory
setwd("/home/NINA.NO/markus.israelsen/Mounts/")
AllFilesInSD = list.files("/data/R/GeoSpatialData/Meteorology/Norway_SeNorge/Original/sd", full.names = TRUE, pattern = ".bil$")
# Define years
uniq_y = c(1957:2020)
# Define months
uniq_m = c("12", "01", "02", "03", "04", "05") # Des - May
# Subsetting the dataset by selecting only the months we are interested in (all years)
SampleMonths = foreach(i = 1:length(AllFilesInSD), .combine = c, .packages = c("doParallel", "raster")) %dopar% {
if((substring(AllFilesInSD[i], first = nchar(AllFilesInSD[i])-8, last = nchar(AllFilesInSD[i])-7)) %in% uniq_m){ # if the month in line "i" is one of the months we are interested in, append that line to SampleMonths
AllFilesInSD[i]
}
}
# Calculating the number of days with snow cover for each year
snowDepth_all_years = list()
snowDepth_all_years = foreach(i = 2:length(uniq_y), .packages = c("doParallel","raster", "rlist")) %dopar% {
snowDepth_year = SampleMonths[grepl(paste("sd", uniq_y[i]-1, 12, sep = "_"), SampleMonths, fixed = TRUE)]
snowDepth_year = list.append(snowDepth_year, SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[2], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[3], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[4], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[5], sep = "_"), SampleMonths, fixed = TRUE)], SampleMonths[grepl(paste("sd", uniq_y[i], uniq_m[6], sep = "_"), SampleMonths, fixed = TRUE)])
snowDepth_year = stack(snowDepth_year)
snowDepth_all_years[[i-1]] = stackApply(stack(snowDepth_year), c(1), fun = mean)
}
# Stacking the years to one raster stack
snowDepth_all_years = stack(snowDepth_all_years)
layerNames = c()
for(i in 1:length(uniq_y)){
layerNames = append(layerNames, paste(substring(uniq_y[i], first = nchar(uniq_y[i])-1, last = nchar(uniq_y[i])), substring(uniq_y[i+1], first = nchar(uniq_y[i+1])-1, last = nchar(uniq_y[i+1])), sep="-"))
}
layerNames = layerNames[1:(length(uniq_y)-1)]
names(snowDepth_all_years) = layerNames # Name by years
# Rasterstack directory;
RasterLocation <- paste("/data/P-Prosjekter/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", paste(paste("sd_snowdepth", uniq_y[1], uniq_y[length(uniq_y)], sep = "_"),".grd", sep = ""), sep = "")
# Write raster
writeRaster(snowDepth_all_years, RasterLocation, format="raster", overwrite = TRUE)
stopImplicitCluster()
Beregn antall “fjellpixler” og legg layer til infrastruktur raster (Må kjøres i GEE).
var infra = ee.Image("users/tsimonjakobsson/ecocond_2020-2021/NY_INFRA_IND"),
norway_wgs84 = ee.FeatureCollection("users/tsimonjakobsson/ecocond_2020-2021/Norway_wgs84"),
regnorway_wgs84 = ee.FeatureCollection("users/tsimonjakobsson/ecocond_2020-2021/regNorway_wgs84"),
ecosystem_map = ee.Image("users/zandersamuel/NINA/Raster/Norway_ecosystem_types_Simon_5m"),
infra_wgs84 = ee.Image("users/markusfisraelsen/Infra_wgs84"),
infra_epsg = ee.Image("users/markusfisraelsen/Infra_ESPG25833"),
ecoViz = {"min":101,"max":952,"palette":["#00911d","#bcbcbc","#f2e341","#eb56ff","#c2efff","#75b3ff","#2163ff","#3252a8","#ff0000"]};
// From Zander
function reduceImgResolution(image, reducer, projection){
return image.reduceResolution({
reducer: reducer,
bestEffort: false, // for best accuracy, this should be left as false
maxPixels: 420
}).reproject(projection)
}
// To show the different infrastructure index values as a colour gradient
var infraViz = {min: 0, max: 15.38416862487793, palette: ['00bbbb', '0000bb']};
// Map infrastructure
var infra_viz = infra_epsg.visualize(infraViz);
//Map.addLayer(infra_viz,{}, 'infra_all');
// Map ecosystem
var ecosystem_viz = ecosystem_map.visualize(ecoViz);
//Map.addLayer(ecosystem_viz,{}, 'ecosystem_viz');
// Get the projection for infrastructure and ecosystem
var infra_projection = infra_viz.projection();
var ecosystem_projection = ecosystem_map.projection();
// Filter to get regions
var region1 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 1));
var region2 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 2));
var region3 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 3));
var region4 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 4));
var region5 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 5));
var region1_geo = region1.geometry();
var region2_geo = region2.geometry();
var region3_geo = region3.geometry();
var region4_geo = region4.geometry();
var region5_geo = region5.geometry();
// Clip infra for each region
var infra_region1 = infra_epsg.clip(region1_geo);
var infra_region2 = infra_epsg.clip(region2_geo);
var infra_region3 = infra_epsg.clip(region3_geo);
var infra_region4 = infra_epsg.clip(region4_geo);
var infra_region5 = infra_epsg.clip(region5_geo);
//Map.addLayer(infra_region1.visualize(infraViz));
// Print the native scale of the infra layer
var infra_scale = infra_region1.projection().nominalScale();
//print('Infra scale in meters', infra_scale);
// Clip ecosystem for each region
var eco_region1 = ecosystem_map.clip(region1_geo);
var eco_region2 = ecosystem_map.clip(region2_geo);
var eco_region3 = ecosystem_map.clip(region3_geo);
var eco_region4 = ecosystem_map.clip(region4_geo);
var eco_region5 = ecosystem_map.clip(region5_geo);
//Map.addLayer(eco_region1.visualize(ecoViz));
// Print the native scale of the ecosystem layer
var eco_scale = eco_region1.projection().nominalScale();
//print('Eco scale in meters', eco_scale);
// Mask out the mountain ecosystem
var mount_eco_region1 = eco_region1.eq(201).or(eco_region1.eq(202)).selfMask();
var mount_mask_region1 = ecosystem_map.updateMask(mount_eco_region1);
var mount_eco_region2 = eco_region2.eq(201).or(eco_region2.eq(202)).selfMask();
var mount_mask_region2 = ecosystem_map.updateMask(mount_eco_region2);
var mount_eco_region3 = eco_region3.eq(201).or(eco_region3.eq(202)).selfMask();
var mount_mask_region3 = ecosystem_map.updateMask(mount_eco_region3);
var mount_eco_region4 = eco_region4.eq(201).or(eco_region4.eq(202)).selfMask();
var mount_mask_region4 = ecosystem_map.updateMask(mount_eco_region4);
var mount_eco_region5 = eco_region5.eq(201).or(eco_region5.eq(202)).selfMask();
var mount_mask_region5 = ecosystem_map.updateMask(mount_eco_region5);
//Map.addLayer(mount_mask_region2.visualize({bands: "b1", palette: ["005500", "00ff00"]}));
// Get the count of mountain pixels for each region
var mountCount_region1 = reduceImgResolution(mount_mask_region1, ee.Reducer.count(), infra_projection);
mountCount_region1 = mountCount_region1.unmask(0);
var mountCount_region2 = reduceImgResolution(mount_mask_region2, ee.Reducer.count(), infra_projection);
mountCount_region2 = mountCount_region2.unmask(0);
var mountCount_region3 = reduceImgResolution(mount_mask_region3, ee.Reducer.count(), infra_projection);
mountCount_region3 = mountCount_region3.unmask(0);
var mountCount_region4 = reduceImgResolution(mount_mask_region4, ee.Reducer.count(), infra_projection);
mountCount_region4 = mountCount_region4.unmask(0);
var mountCount_region5 = reduceImgResolution(mount_mask_region5, ee.Reducer.count(), infra_projection);
mountCount_region5 = mountCount_region5.unmask(0);
// Append the mountain pixel count to the infra index raster
var mount_float_region1 = mountCount_region1.float(); // Convert the mountain count layer to float to be identical to the infra raster
var mount_infra_region1 = infra_region1.rename('natureIndex')
.addBands(mount_float_region1.rename('mountCount'));
var mount_float_region2 = mountCount_region2.float();
var mount_infra_region2 = infra_region2.rename('natureIndex')
.addBands(mount_float_region2.rename('mountCount'));
var mount_float_region3 = mountCount_region3.float();
var mount_infra_region3 = infra_region3.rename('natureIndex')
.addBands(mount_float_region3.rename('mountCount'));
var mount_float_region4 = mountCount_region4.float();
var mount_infra_region4 = infra_region4.rename('natureIndex')
.addBands(mount_float_region4.rename('mountCount'));
var mount_float_region5 = mountCount_region5.float();
var mount_infra_region5 = infra_region5.rename('natureIndex')
.addBands(mount_float_region5.rename('mountCount'));
//print(infra_projection);
// Exporting the image for each region
Export.image.toDrive({
image: mount_infra_region1,
description: "mount_infra_region1",
region: mount_infra_region1.geometry(),
scale: 100,
crs: infra_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: mount_infra_region2,
description: "mount_infra_region2",
region: mount_infra_region2.geometry(),
scale: 100,
crs: infra_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: mount_infra_region3,
description: "mount_infra_region3",
region: mount_infra_region3.geometry(),
scale: 100,
crs: infra_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: mount_infra_region4,
description: "mount_infra_region4",
region: mount_infra_region4.geometry(),
scale: 100,
crs: infra_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: mount_infra_region5,
description: "mount_infra_region5",
region: mount_infra_region5.geometry(),
scale: 100,
crs: infra_projection,
maxPixels: 1e10
});
Konvertering av raster filene fra “.grd” filtype til “.tif”.
# Sum nedbør
rDir_snCon = "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/"
snCon = stack(paste(rDir_snCon, "rr_sum_1957_2020.grd", sep=""))
crs(snCon) = CRS("+proj=utm +zone=33 +ellps=GRS80 +units=m +no_defs")
writeRaster(snCon, paste(rDir_snCon, "rr_sum_utm_1957_2020.grd", sep = ""), format = "GTiff")
# Dager med nedbør
rDir_dnCon = "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/"
dnCon = stack(paste(rDir_dnCon, "rr_days_1957_2020.grd", sep=""))
crs(dnCon) = CRS("+proj=utm +zone=33 +ellps=GRS80 +units=m +no_defs")
writeRaster(dnCon, paste(rDir_dnCon, "rr_days_utm_1957_2020.grd", sep = ""), format = "GTiff")
# Temperatur - sommer
rDir_tsCon = "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/"
tsCon = stack(paste(rDir_tsCon, "tm_summer_1957_2020.grd", sep=""))
crs(tsCon) = CRS("+proj=utm +zone=33 +ellps=GRS80 +units=m +no_defs")
writeRaster(tsCon, paste(rDir_tsCon, "tm_summer_utm_1957_2020.grd", sep = ""), format = "GTiff")
# Temperatur - vinter
rDir_tvCon = "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/"
tvCon = stack(paste(rDir_tvCon, "tm_winter_1957_2020.grd", sep=""))
crs(tvCon) = CRS("+proj=utm +zone=33 +ellps=GRS80 +units=m +no_defs")
writeRaster(tvCon, paste(rDir_tvCon, "tm_winter_utm_1957_2020.grd", sep = ""), format = "GTiff")
# Snødekke
rDir_scCon = "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/"
scCon = stack(paste(rDir_scCon, "sd_s_1957_2020.grd", sep=""))
crs(scCon) = CRS("+proj=utm +zone=33 +ellps=GRS80 +units=m +no_defs")
writeRaster(scCon, paste(rDir_scCon, "sd_s_utm_1957_2020.grd", sep = ""), format = "GTiff")
# Vekstsesong
rDir_vCon = "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/"
vCon = stack(paste(rDir_vCon, "sd_gw_1957_2020.grd", sep=""))
crs(vCon) = CRS("+proj=utm +zone=33 +ellps=GRS80 +units=m +no_defs")
writeRaster(vCon, paste(rDir_vCon, "sd_gw_utm_1957_2020.grd", sep = ""), format = "GTiff")
# Vinterregn
rDir_vrCon = "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/"
vrCon = stack(paste(rDir_vrCon, "sd_vr_1957_2020.grd", sep=""))
crs(vrCon) = CRS("+proj=utm +zone=33 +ellps=GRS80 +units=m +no_defs")
writeRaster(vrCon, paste(rDir_vrCon, "sd_vr_utm_1957_2020.grd", sep = ""), format = "GTiff", overwrite = TRUE)
# Snødybde
rDir_sdCon = "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/"
sdCon = stack(paste(rDir_sdCon, "sd_snowdepth_1957_2020.grd", sep = ""))
crs(sdCon) = CRS("+proj=utm +zone=33 +ellps=GRS80 +units=m +no_defs")
writeRaster(sdCon, paste(rDir_sdCon, "snowDepth_utm_1957_2020.grd", sep = ""), format = "GTiff", overwrite = TRUE)
var infra_epsg = ee.Image("users/markusfisraelsen/Infra_ESPG25833"),
ecosystem_map = ee.Image("users/zandersamuel/NINA/Raster/Norway_ecosystem_types_Simon_5m"),
regnorway_wgs84 = ee.FeatureCollection("users/tsimonjakobsson/ecocond_2020-2021/regNorway_wgs84"),
Mount_daysPrecip = ee.Image("users/markusfisraelsen/Mount_daysPrecip"),
Mount_daysSnowCover = ee.Image("users/markusfisraelsen/Mount_daysSnowCover"),
Mount_growthSeason = ee.Image("users/markusfisraelsen/Mount_growthSeason"),
Mount_meanSummer = ee.Image("users/markusfisraelsen/Mount_meanSummer"),
Mount_meanWinter = ee.Image("users/markusfisraelsen/Mount_meanWinter"),
Mount_winterRain = ee.Image("users/markusfisraelsen/Mount_winterRain"),
Mount_sumPrecip = ee.Image("users/markusfisraelsen/Mount_sumPrecip");
// To show the different infrastructure index values as a colour gradient
var infraViz = {min: 0, max: 15.38416862487793, palette: ['00bbbb', '0000bb']};
// Map infrastructure
var infra_viz = infra_epsg.visualize(infraViz);
//Map.addLayer(infra_viz,{}, 'infra_all');
// Get the projection for infrastructure, ecosystem and days precipitation
var infra_projection = infra_viz.projection();
var ecosystem_projection = ecosystem_map.projection();
var daysPrecip_projection = Mount_daysPrecip.projection(); // This projection is used for all climate variables
// Filter to get regions
var region1 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 1));
var region2 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 2));
var region3 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 3));
var region4 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 4));
var region5 = regnorway_wgs84.filter(ee.Filter.eq("Region_1", 5));
var region1_geo = region1.geometry();
var region2_geo = region2.geometry();
var region3_geo = region3.geometry();
var region4_geo = region4.geometry();
var region5_geo = region5.geometry();
// Clip sum precipitation for each region
var sumPrecip_region1 = Mount_sumPrecip.clip(region1_geo);
var sumPrecip_region2 = Mount_sumPrecip.clip(region2_geo);
var sumPrecip_region3 = Mount_sumPrecip.clip(region3_geo);
var sumPrecip_region4 = Mount_sumPrecip.clip(region4_geo);
var sumPrecip_region5 = Mount_sumPrecip.clip(region5_geo);
// Clip daysPrecip for each region
var daysPrecip_region1 = Mount_daysPrecip.clip(region1_geo);
var daysPrecip_region2 = Mount_daysPrecip.clip(region2_geo);
var daysPrecip_region3 = Mount_daysPrecip.clip(region3_geo);
var daysPrecip_region4 = Mount_daysPrecip.clip(region4_geo);
var daysPrecip_region5 = Mount_daysPrecip.clip(region5_geo);
// Clip mean summer temperature for each region
var meanSummer_region1 = Mount_meanSummer.clip(region1_geo);
var meanSummer_region2 = Mount_meanSummer.clip(region2_geo);
var meanSummer_region3 = Mount_meanSummer.clip(region3_geo);
var meanSummer_region4 = Mount_meanSummer.clip(region4_geo);
var meanSummer_region5 = Mount_meanSummer.clip(region5_geo);
// Clip mean winter temperature for each region
var meanWinter_region1 = Mount_meanWinter.clip(region1_geo);
var meanWinter_region2 = Mount_meanWinter.clip(region2_geo);
var meanWinter_region3 = Mount_meanWinter.clip(region3_geo);
var meanWinter_region4 = Mount_meanWinter.clip(region4_geo);
var meanWinter_region5 = Mount_meanWinter.clip(region5_geo);
// Clip daysSnowCover for each region
var daysSnowCover_region1 = Mount_daysSnowCover.clip(region1_geo);
var daysSnowCover_region2 = Mount_daysSnowCover.clip(region2_geo);
var daysSnowCover_region3 = Mount_daysSnowCover.clip(region3_geo);
var daysSnowCover_region4 = Mount_daysSnowCover.clip(region4_geo);
var daysSnowCover_region5 = Mount_daysSnowCover.clip(region5_geo);
// Clip growthSeason for each region
var growthSeason_region1 = Mount_growthSeason.clip(region1_geo);
var growthSeason_region2 = Mount_growthSeason.clip(region2_geo);
var growthSeason_region3 = Mount_growthSeason.clip(region3_geo);
var growthSeason_region4 = Mount_growthSeason.clip(region4_geo);
var growthSeason_region5 = Mount_growthSeason.clip(region5_geo);
// Clip winterRain for each region
var winterRain_region1 = Mount_winterRain.clip(region1_geo);
var winterRain_region2 = Mount_winterRain.clip(region2_geo);
var winterRain_region3 = Mount_winterRain.clip(region3_geo);
var winterRain_region4 = Mount_winterRain.clip(region4_geo);
var winterRain_region5 = Mount_winterRain.clip(region5_geo);
print(Mount_sumPrecip.projection());
print(daysPrecip_projection);
// Export the sumPrecip climate variables for each region
Export.image.toDrive({
image: sumPrecip_region1,
description: "Mount_sumPrecip_region1",
scale: 1000,
region: sumPrecip_region1.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: sumPrecip_region2,
description: "Mount_sumPrecip_region2",
scale: 1000,
region: sumPrecip_region2.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: sumPrecip_region3,
description: "Mount_sumPrecip_region3",
scale: 1000,
region: sumPrecip_region3.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: sumPrecip_region4,
description: "Mount_sumPrecip_region4",
scale: 1000,
region: sumPrecip_region4.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: sumPrecip_region5,
description: "Mount_sumPrecip_region5",
scale: 1000,
region: sumPrecip_region5.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
// Export the daysPrecip climate variables for each region
Export.image.toDrive({
image: daysPrecip_region1,
description: "Mount_daysPrecip_region1",
scale: 1000,
region: daysPrecip_region1.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: daysPrecip_region2,
description: "Mount_daysPrecip_region2",
scale: 1000,
region: daysPrecip_region2.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: daysPrecip_region3,
description: "Mount_daysPrecip_region3",
scale: 1000,
region: daysPrecip_region3.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: daysPrecip_region4,
description: "Mount_daysPrecip_region4",
scale: 1000,
region: daysPrecip_region4.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: daysPrecip_region5,
description: "Mount_daysPrecip_region5",
scale: 1000,
region: daysPrecip_region5.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
// Export the meanSummer climate variables for each region
Export.image.toDrive({
image: meanSummer_region1,
description: "Mount_meanSummer_region1",
scale: 1000,
region: meanSummer_region1.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: meanSummer_region2,
description: "Mount_meanSummer_region2",
scale: 1000,
region: meanSummer_region2.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: meanSummer_region3,
description: "Mount_meanSummer_region3",
scale: 1000,
region: meanSummer_region3.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: meanSummer_region4,
description: "Mount_meanSummer_region4",
scale: 1000,
region: meanSummer_region4.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: meanSummer_region5,
description: "Mount_meanSummer_region5",
scale: 1000,
region: meanSummer_region5.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
// Export the meanWinter climate variables for each region
Export.image.toDrive({
image: meanWinter_region1,
description: "Mount_meanWinter_region1",
scale: 1000,
region: meanWinter_region1.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: meanWinter_region2,
description: "Mount_meanWinter_region2",
scale: 1000,
region: meanWinter_region2.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: meanWinter_region3,
description: "Mount_meanWinter_region3",
scale: 1000,
region: meanWinter_region3.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: meanWinter_region4,
description: "Mount_meanWinter_region4",
scale: 1000,
region: meanWinter_region4.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: meanWinter_region5,
description: "Mount_meanWinter_region5",
scale: 1000,
region: meanWinter_region5.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
// Export the snowCover climate variables for each region
Export.image.toDrive({
image: daysSnowCover_region1,
description: "Mount_daysSnowCover_region1",
scale: 1000,
region: daysSnowCover_region1.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: daysSnowCover_region2,
description: "Mount_daysSnowCover_region2",
scale: 1000,
region: daysSnowCover_region2.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: daysSnowCover_region3,
description: "Mount_daysSnowCover_region3",
scale: 1000,
region: daysSnowCover_region3.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: daysSnowCover_region4,
description: "Mount_daysSnowCover_region4",
scale: 1000,
region: daysSnowCover_region4.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: daysSnowCover_region5,
description: "Mount_daysSnowCover_region5",
scale: 1000,
region: daysSnowCover_region5.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
// Export the growthSeason climate variables for each region
Export.image.toDrive({
image: growthSeason_region1,
description: "Mount_growthSeason_region1",
scale: 1000,
region: growthSeason_region1.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: growthSeason_region2,
description: "Mount_growthSeason_region2",
scale: 1000,
region: growthSeason_region2.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: growthSeason_region3,
description: "Mount_growthSeason_region3",
scale: 1000,
region: growthSeason_region3.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: growthSeason_region4,
description: "Mount_growthSeason_region4",
scale: 1000,
region: growthSeason_region4.geometry(),
//crs: Mount_growthSeason_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: growthSeason_region5,
description: "Mount_growthSeason_region5",
scale: 1000,
region: growthSeason_region5.geometry(),
//crs: Mount_growthSeason_projection,
maxPixels: 1e10
});
// Export the winterRain climate variables for each region
Export.image.toDrive({
image: winterRain_region1,
description: "Mount_winterRain_region1",
scale: 1000,
region: winterRain_region1.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: winterRain_region2,
description: "Mount_winterRain_region2",
scale: 1000,
region: winterRain_region2.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: winterRain_region3,
description: "Mount_winterRain_region3",
scale: 1000,
region: winterRain_region3.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: winterRain_region4,
description: "Mount_winterRain_region4",
scale: 1000,
region: winterRain_region4.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Export.image.toDrive({
image: winterRain_region5,
description: "Mount_winterRain_region5",
scale: 1000,
region: winterRain_region5.geometry(),
//crs: daysPrecip_projection,
maxPixels: 1e10
});
Loading the mountain count raster for each region
# Mountain Count
mountCount_region1_full = raster("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/mountInfra/mount_infra_region1.tif", band = 2)
mountCount_region2_full = raster("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/mountInfra/mount_infra_region2.tif", band = 2)
mountCount_region3_full = raster("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/mountInfra/mount_infra_region3.tif", band = 2)
mountCount_region4_full = raster("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/mountInfra/mount_infra_region4.tif", band = 2)
mountCount_region5_full = raster("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/mountInfra/mount_infra_region5.tif", band = 2)
# Sum precipitation region 1 1957 - 2020
sumPrecip_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region1.tif$")
sumPrecip_region1 = stack(sumPrecip_region1)
sumExtent_region1 = extent(sumPrecip_region1)
sumShp_region1 = as(sumExtent_region1, "SpatialPolygons")
crs(sumShp_region1) = crs(sumPrecip_region1)
# Sum precipitation region 2 1957 - 2020
sumPrecip_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region2.tif$")
sumPrecip_region2 = stack(sumPrecip_region2)
sumExtent_region2 = extent(sumPrecip_region2)
sumShp_region2 = as(sumExtent_region2, "SpatialPolygons")
crs(sumShp_region2) = crs(sumPrecip_region2)
# Sum precipitation region 3 1957 - 2020
sumPrecip_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region3.tif$")
sumPrecip_region3 = stack(sumPrecip_region3)
sumExtent_region3 = extent(sumPrecip_region3)
sumShp_region3 = as(sumExtent_region3, "SpatialPolygons")
crs(sumShp_region3) = crs(sumPrecip_region3)
# Sum precipitation region 4 1957 - 2020
sumPrecip_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region4.tif$")
sumPrecip_region4 = stack(sumPrecip_region4)
sumExtent_region4 = extent(sumPrecip_region4)
sumShp_region4 = as(sumExtent_region4, "SpatialPolygons")
crs(sumShp_region4) = crs(sumPrecip_region4)
# Sum precipitation region 5 1957 - 2020
sumPrecip_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region5.tif$")
sumPrecip_region5 = stack(sumPrecip_region5)
sumExtent_region5 = extent(sumPrecip_region5)
sumShp_region5 = as(sumExtent_region5, "SpatialPolygons")
crs(sumShp_region5) = crs(sumPrecip_region5)
# Clip mountain count to the sum precip shapefile
mountCount_region1 = crop(mountCount_region1_full, sumShp_region1)
mountCount_region2 = crop(mountCount_region2_full, sumShp_region2)
mountCount_region3 = crop(mountCount_region3_full, sumShp_region3)
mountCount_region4 = crop(mountCount_region4_full, sumShp_region4)
mountCount_region5 = crop(mountCount_region5_full, sumShp_region5)
# Reduce mountain count region 1 (100 x 100m) to sumPrecip region 1 (1000 x 1000m).
mountCount_region1_red = raster::aggregate(mountCount_region1, fact = 10, fun = sum)
extent(mountCount_region1_red) = extent(sumPrecip_region1)
nSumPrecip_region1 = list()
for(i in 1:nlayers(sumPrecip_region1)){
nSumPrecip_region1[[i]] = overlay(sumPrecip_region1[[i]], mountCount_region1_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
nSumPrecip_region1 = stack(nSumPrecip_region1)
sumPrecipMountCount_region1 = addLayer(nSumPrecip_region1, mountCount_region1_red)
names(sumPrecipMountCount_region1) = c("1957":"2020", "mountCount")
# Reduce mountain count region 2 (100 x 100m) to sumPrecip region 2 (1000 x 1000m).
mountCount_region2_red = raster::aggregate(mountCount_region2, fact = 10, fun = sum)
extent(mountCount_region2_red) = extent(sumPrecip_region2)
MCount_region2_red = resample(mountCount_region2_red, sumPrecip_region2, method = "ngb") # Had to resample because mountain count had one column too few
nSumPrecip_region2 = list()
for(i in 1:nlayers(sumPrecip_region2)){
nSumPrecip_region2[[i]] = overlay(sumPrecip_region2[[i]], MCount_region2_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
nSumPrecip_region2 = stack(nSumPrecip_region2)
sumPrecipMountCount_region2 = addLayer(nSumPrecip_region2, MCount_region2_red)
names(sumPrecipMountCount_region2) = c("1957":"2020", "mountCount")
# Reduce mountain count region 3 (100 x 100m) to sumPrecip region 3 (1000 x 1000m).
mountCount_region3_red = raster::aggregate(mountCount_region3, fact = 10, fun = sum)
extent(mountCount_region3_red) = extent(sumPrecip_region3)
MCount_region3_red = resample(mountCount_region3_red, sumPrecip_region3, method = "ngb") # Had to resample because mountain count had one column too few
nSumPrecip_region3 = list()
for(i in 1:nlayers(sumPrecip_region3)){
nSumPrecip_region3[[i]] = overlay(sumPrecip_region3[[i]], MCount_region3_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
nSumPrecip_region3 = stack(nSumPrecip_region3)
sumPrecipMountCount_region3 = addLayer(nSumPrecip_region3, MCount_region3_red)
names(sumPrecipMountCount_region3) = c("1957":"2020", "mountCount")
# Reduce mountain count region 4 (100 x 100m) to sumPrecip region 4 (1000 x 1000m).
mountCount_region4_red = raster::aggregate(mountCount_region4, fact = 10, fun = sum)
extent(mountCount_region4_red) = extent(sumPrecip_region4)
nSumPrecip_region4 = list()
for(i in 1:nlayers(sumPrecip_region4)){
nSumPrecip_region4[[i]] = overlay(sumPrecip_region4[[i]], mountCount_region4_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
nSumPrecip_region4 = stack(nSumPrecip_region4)
sumPrecipMountCount_region4 = addLayer(nSumPrecip_region4, mountCount_region4_red)
names(sumPrecipMountCount_region4) = c("1957":"2020", "mountCount")
# Reduce mountain count region 5 (100 x 100m) to sumPrecip region 5 (1000 x 1000m).
mountCount_region5_red = raster::aggregate(mountCount_region5, fact = 10, fun = sum)
extent(mountCount_region5_red) = extent(sumPrecip_region5)
nSumPrecip_region5 = list()
for(i in 1:nlayers(sumPrecip_region5)){
nSumPrecip_region5[[i]] = overlay(sumPrecip_region5[[i]], mountCount_region5_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
nSumPrecip_region5 = stack(nSumPrecip_region5)
sumPrecipMountCount_region5 = addLayer(nSumPrecip_region5, mountCount_region5_red)
names(sumPrecipMountCount_region5) = c("1957":"2020", "mountCount")
# Set raster export directory
RDir_sumPrecip_r1 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", paste(paste("sumPrecipMountCount_region1", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RDir_sumPrecip_r2 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", paste(paste("sumPrecipMountCount_region2", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RDir_sumPrecip_r3 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", paste(paste("sumPrecipMountCount_region3", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RDir_sumPrecip_r4 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", paste(paste("sumPrecipMountCount_region4", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RDir_sumPrecip_r5 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", paste(paste("sumPrecipMountCount_region5", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
# Export the rasters
writeRaster(sumPrecipMountCount_region1, RDir_sumPrecip_r1, format = "raster", overwrite = TRUE)
writeRaster(sumPrecipMountCount_region2, RDir_sumPrecip_r2, format = "raster", overwrite = TRUE)
writeRaster(sumPrecipMountCount_region3, RDir_sumPrecip_r3, format = "raster", overwrite = TRUE)
writeRaster(sumPrecipMountCount_region4, RDir_sumPrecip_r4, format = "raster", overwrite = TRUE)
writeRaster(sumPrecipMountCount_region5, RDir_sumPrecip_r5, format = "raster", overwrite = TRUE)
# Days precipitation region 1 1957 - 2020
daysPrecipMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region1.tif$")
daysPrecipMountCount_region1 = stack(daysPrecipMountCount_region1)
extent(mountCount_region1_red) = extent(daysPrecipMountCount_region1)
dDaysPrecip_region1 = list()
for(i in 1:nlayers(daysPrecipMountCount_region1)){
dDaysPrecip_region1[[i]] = overlay(daysPrecipMountCount_region1[[i]], mountCount_region1_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
dDaysPrecip_region1 = stack(dDaysPrecip_region1)
daysPrecipMountCount_region1 = addLayer(dDaysPrecip_region1, mountCount_region1_red) # use the reduced mountain count created above (5.1)
names(daysPrecipMountCount_region1) = c("1957":"2020", "mountCount")
# Days precipitation region 2 1957 - 2020
daysPrecipMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region2.tif$")
daysPrecipMountCount_region2 = stack(daysPrecipMountCount_region2)
extent(mountCount_region2_red) = extent(daysPrecipMountCount_region2)
dDaysPrecip_region2 = list()
for(i in 1:nlayers(daysPrecipMountCount_region2)){
dDaysPrecip_region2[[i]] = overlay(daysPrecipMountCount_region2[[i]], MCount_region2_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
dDaysPrecip_region2 = stack(dDaysPrecip_region2)
daysPrecipMountCount_region2 = addLayer(dDaysPrecip_region2, MCount_region2_red) # use the reduced mountain count created above (5.1)
names(daysPrecipMountCount_region2) = c("1957":"2020", "mountCount")
# Days precipitation region 3 1957 - 2020
daysPrecipMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region3.tif$")
daysPrecipMountCount_region3 = stack(daysPrecipMountCount_region3)
extent(mountCount_region3_red) = extent(daysPrecipMountCount_region3)
dDaysPrecip_region3 = list()
for(i in 1:nlayers(daysPrecipMountCount_region3)){
dDaysPrecip_region3[[i]] = overlay(daysPrecipMountCount_region3[[i]], MCount_region3_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
dDaysPrecip_region3 = stack(dDaysPrecip_region3)
daysPrecipMountCount_region3 = addLayer(dDaysPrecip_region3, MCount_region3_red) # use the reduced mountain count created above (5.1)
names(daysPrecipMountCount_region3) = c("1957":"2020", "mountCount")
# Days precipitation region 4 1957 - 2020
daysPrecipMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region4.tif$")
daysPrecipMountCount_region4 = stack(daysPrecipMountCount_region4)
extent(mountCount_region4_red) = extent(daysPrecipMountCount_region4)
dDaysPrecip_region4 = list()
for(i in 1:nlayers(daysPrecipMountCount_region4)){
dDaysPrecip_region4[[i]] = overlay(daysPrecipMountCount_region4[[i]], mountCount_region4_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
dDaysPrecip_region4 = stack(dDaysPrecip_region4)
daysPrecipMountCount_region4 = addLayer(dDaysPrecip_region4, mountCount_region4_red) # use the reduced mountain count created above (5.1)
names(daysPrecipMountCount_region4) = c("1957":"2020", "mountCount")
# Days precipitation region 5 1957 - 2020
daysPrecipMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region5.tif$")
daysPrecipMountCount_region5 = stack(daysPrecipMountCount_region5)
extent(mountCount_region5_red) = extent(daysPrecipMountCount_region5)
dDaysPrecip_region5 = list()
for(i in 1:nlayers(daysPrecipMountCount_region5)){
dDaysPrecip_region5[[i]] = overlay(daysPrecipMountCount_region5[[i]], mountCount_region5_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
dDaysPrecip_region5 = stack(dDaysPrecip_region5)
daysPrecipMountCount_region5 = addLayer(dDaysPrecip_region5, mountCount_region5_red) # use the reduced mountain count created above (5.1)
names(daysPrecipMountCount_region5) = c("1957":"2020", "mountCount")
# Export the raster
RasDir_r1 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", paste(paste("daysPrecipMountCount_region1", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasDir_r2 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", paste(paste("daysPrecipMountCount_region2", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasDir_r3 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", paste(paste("daysPrecipMountCount_region3", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasDir_r4 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", paste(paste("daysPrecipMountCount_region4", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasDir_r5 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", paste(paste("daysPrecipMountCount_region5", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
# Write Raster
writeRaster(daysPrecipMountCount_region1, RasDir_r1, format = "raster", overwrite = TRUE)
writeRaster(daysPrecipMountCount_region2, RasDir_r2, format = "raster", overwrite = TRUE)
writeRaster(daysPrecipMountCount_region3, RasDir_r3, format = "raster", overwrite = TRUE)
writeRaster(daysPrecipMountCount_region4, RasDir_r4, format = "raster", overwrite = TRUE)
writeRaster(daysPrecipMountCount_region5, RasDir_r5, format = "raster", overwrite = TRUE)
# Mean summer region 1 1957 - 2020
meanSummerMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region1.tif$")
meanSummerMountCount_region1 = stack(meanSummerMountCount_region1)
extent(mountCount_region1_red) = extent(meanSummerMountCount_region1)
mSummer_region1 = list()
for(i in 1:nlayers(meanSummerMountCount_region1)){
mSummer_region1[[i]] = overlay(meanSummerMountCount_region1[[i]], mountCount_region1_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mSummer_region1 = stack(mSummer_region1)
meanSummerMountCount_region1 = addLayer(mSummer_region1, mountCount_region1_red) # use the reduced mountain count created above (5.1)
names(meanSummerMountCount_region1) = c("1957":"2020", "mountCount")
# Mean summer region 2 1957 - 2020
meanSummerMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region2.tif$")
meanSummerMountCount_region2 = stack(meanSummerMountCount_region2)
extent(mountCount_region2_red) = extent(meanSummerMountCount_region2)
mSummer_region2 = list()
for(i in 1:nlayers(meanSummerMountCount_region2)){
mSummer_region2[[i]] = overlay(meanSummerMountCount_region2[[i]], MCount_region2_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mSummer_region2 = stack(mSummer_region2)
meanSummerMountCount_region2 = addLayer(mSummer_region2, MCount_region2_red) # use the reduced mountain count created above (5.1)
names(meanSummerMountCount_region2) = c("1957":"2020", "mountCount")
# Mean summer region 3 1957 - 2020
meanSummerMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region3.tif$")
meanSummerMountCount_region3 = stack(meanSummerMountCount_region3)
extent(mountCount_region3_red) = extent(meanSummerMountCount_region3)
mSummer_region3 = list()
for(i in 1:nlayers(meanSummerMountCount_region3)){
mSummer_region3[[i]] = overlay(meanSummerMountCount_region3[[i]], MCount_region3_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mSummer_region3 = stack(mSummer_region3)
meanSummerMountCount_region3 = addLayer(mSummer_region3, MCount_region3_red) # use the reduced mountain count created above (5.1)
names(meanSummerMountCount_region3) = c("1957":"2020", "mountCount")
# Mean summer region 4 1957 - 2020
meanSummerMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region4.tif$")
meanSummerMountCount_region4 = stack(meanSummerMountCount_region4)
extent(mountCount_region4_red) = extent(meanSummerMountCount_region4)
mSummer_region4 = list()
for(i in 1:nlayers(meanSummerMountCount_region4)){
mSummer_region4[[i]] = overlay(meanSummerMountCount_region4[[i]], mountCount_region4_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mSummer_region4 = stack(mSummer_region4)
meanSummerMountCount_region4 = addLayer(mSummer_region4, mountCount_region4_red) # use the reduced mountain count created above (5.1)
names(meanSummerMountCount_region4) = c("1957":"2020", "mountCount")
# Mean summer region 5 1957 - 2020
meanSummerMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region5.tif$")
meanSummerMountCount_region5 = stack(meanSummerMountCount_region5)
extent(mountCount_region5_red) = extent(meanSummerMountCount_region5)
mSummer_region5 = list()
for(i in 1:nlayers(meanSummerMountCount_region5)){
mSummer_region5[[i]] = overlay(meanSummerMountCount_region5[[i]], mountCount_region5_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mSummer_region5 = stack(mSummer_region5)
meanSummerMountCount_region5 = addLayer(mSummer_region5, mountCount_region5_red) # use the reduced mountain count created above (5.1)
names(meanSummerMountCount_region5) = c("1957":"2020", "mountCount")
# Export the raster
RasDir_r1 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", paste(paste("meanSummerMountCount_region1", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasDir_r2 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", paste(paste("meanSummerMountCount_region2", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasDir_r3 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", paste(paste("meanSummerMountCount_region3", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasDir_r4 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", paste(paste("meanSummerMountCount_region4", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasDir_r5 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", paste(paste("meanSummerMountCount_region5", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
# Write Raster
writeRaster(meanSummerMountCount_region1, RasDir_r1, format = "raster", overwrite = TRUE)
writeRaster(meanSummerMountCount_region2, RasDir_r2, format = "raster", overwrite = TRUE)
writeRaster(meanSummerMountCount_region3, RasDir_r3, format = "raster", overwrite = TRUE)
writeRaster(meanSummerMountCount_region4, RasDir_r4, format = "raster", overwrite = TRUE)
writeRaster(meanSummerMountCount_region5, RasDir_r5, format = "raster", overwrite = TRUE)
# Mean Winter temperature region 1
meanWinter_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region1.tif$")
meanWinter_region1 = stack(meanWinter_region1)
mWinter_region1 = list()
for(i in 1:nlayers(meanWinter_region1)){
mWinter_region1[[i]] = overlay(meanWinter_region1[[i]], mountCount_region1_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mWinter_region1 = stack(mWinter_region1)
meanWinterMountCount_region1 = addLayer(mWinter_region1, mountCount_region1_red) # use the reduced mountain count created above (5.1)
winterSeason = c("1957":"2020")
wS = c()
for(i in 2:length(winterSeason)){
wS = append(wS, paste(substr(x = winterSeason[i-1], start = 3, stop = 4), substr(x = winterSeason[i], start = 3, stop = 4), sep = "-"))
}
names(meanWinterMountCount_region1) = c(wS, "mountCount") # rename the layers
# Mean Winter temperature region 2
meanWinter_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region2.tif$")
meanWinter_region2 = stack(meanWinter_region2)
mWinter_region2 = list()
for(i in 1:nlayers(meanWinter_region2)){
mWinter_region2[[i]] = overlay(meanWinter_region2[[i]], MCount_region2_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mWinter_region2 = stack(mWinter_region2)
meanWinterMountCount_region2 = addLayer(mWinter_region2, MCount_region2_red)
names(meanWinterMountCount_region2) = c(wS, "mountCount")
# Mean Winter temperature region 3
meanWinter_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region3.tif$")
meanWinter_region3 = stack(meanWinter_region3)
mWinter_region3 = list()
for(i in 1:nlayers(meanWinter_region3)){
mWinter_region3[[i]] = overlay(meanWinter_region3[[i]], MCount_region3_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mWinter_region3 = stack(mWinter_region3)
meanWinterMountCount_region3 = addLayer(mWinter_region3, MCount_region3_red)
names(meanWinterMountCount_region3) = c(wS, "mountCount")
# Mean Winter temperature region 4
meanWinter_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region4.tif$")
meanWinter_region4 = stack(meanWinter_region4)
mWinter_region4 = list()
for(i in 1:nlayers(meanWinter_region4)){
mWinter_region4[[i]] = overlay(meanWinter_region4[[i]], mountCount_region4_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mWinter_region4 = stack(mWinter_region4)
meanWinterMountCount_region4 = addLayer(mWinter_region4, mountCount_region4_red)
names(meanWinterMountCount_region4) = c(wS, "mountCount")
# Mean Winter temperature region 5
meanWinter_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region5.tif$")
meanWinter_region5 = stack(meanWinter_region5)
mWinter_region5 = list()
for(i in 1:nlayers(meanWinter_region5)){
mWinter_region5[[i]] = overlay(meanWinter_region5[[i]], mountCount_region5_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
mWinter_region5 = stack(mWinter_region5)
meanWinterMountCount_region5 = addLayer(mWinter_region5, mountCount_region5_red)
names(meanWinterMountCount_region5) = c(wS, "mountCount")
# Export the raster
RasterLocation_r1 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", paste(paste("meanWinterMountCount_region1", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r2 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", paste(paste("meanWinterMountCount_region2", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r3 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", paste(paste("meanWinterMountCount_region3", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r4 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", paste(paste("meanWinterMountCount_region4", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r5 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", paste(paste("meanWinterMountCount_region5", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
# Write Raster
writeRaster(meanWinterMountCount_region1, RasterLocation_r1, format = "raster", overwrite = TRUE)
writeRaster(meanWinterMountCount_region2, RasterLocation_r2, format = "raster", overwrite = TRUE)
writeRaster(meanWinterMountCount_region3, RasterLocation_r3, format = "raster", overwrite = TRUE)
writeRaster(meanWinterMountCount_region4, RasterLocation_r4, format = "raster", overwrite = TRUE)
writeRaster(meanWinterMountCount_region5, RasterLocation_r5, format = "raster", overwrite = TRUE)
# Days snow cover region 1
daysSnowCover_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region1.tif$")
daysSnowCover_region1 = stack(daysSnowCover_region1)
daysSC_region1 = list()
for(i in 1:nlayers(daysSnowCover_region1)){
daysSC_region1[[i]] = overlay(daysSnowCover_region1[[i]], mountCount_region1_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
daysSC_region1 = stack(daysSC_region1)
daysSnowCoverMountCount_region1 = addLayer(daysSC_region1, mountCount_region1_red)
winterSeason = c("1957":"2020")
wS = c()
for(i in 2:length(winterSeason)){
wS = append(wS, paste(substr(x = winterSeason[i-1], start = 3, stop = 4), substr(x = winterSeason[i], start = 3, stop = 4), sep = "-"))
}
names(daysSnowCoverMountCount_region1) = c(wS, "mountCount") # rename the layers
# Days snow cover region 2
daysSnowCover_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region2.tif$")
daysSnowCover_region2 = stack(daysSnowCover_region2)
daysSC_region2 = list()
for(i in 1:nlayers(daysSnowCover_region2)){
daysSC_region2[[i]] = overlay(daysSnowCover_region2[[i]], MCount_region2_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
daysSC_region2 = stack(daysSC_region2)
daysSnowCoverMountCount_region2 = addLayer(daysSC_region2, MCount_region2_red)
names(daysSnowCoverMountCount_region2) = c(wS, "mountCount")
# Days snow cover region 3
daysSnowCover_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region3.tif$")
daysSnowCover_region3 = stack(daysSnowCover_region3)
daysSC_region3 = list()
for(i in 1:nlayers(daysSnowCover_region3)){
daysSC_region3[[i]] = overlay(daysSnowCover_region3[[i]], MCount_region3_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
daysSC_region3 = stack(daysSC_region3)
daysSnowCoverMountCount_region3 = addLayer(daysSC_region3, MCount_region3_red)
names(daysSnowCoverMountCount_region3) = c(wS, "mountCount")
# Days snow cover region 4
daysSnowCover_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region4.tif$")
daysSnowCover_region4 = stack(daysSnowCover_region4)
daysSC_region4 = list()
for(i in 1:nlayers(daysSnowCover_region4)){
daysSC_region4[[i]] = overlay(daysSnowCover_region4[[i]], mountCount_region4_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
daysSC_region4 = stack(daysSC_region4)
daysSnowCoverMountCount_region4 = addLayer(daysSC_region4, mountCount_region4_red)
names(daysSnowCoverMountCount_region4) = c(wS, "mountCount")
# Days snow cover region 5
daysSnowCover_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region5.tif$")
daysSnowCover_region5 = stack(daysSnowCover_region5)
daysSC_region5 = list()
for(i in 1:nlayers(daysSnowCover_region5)){
daysSC_region5[[i]] = overlay(daysSnowCover_region5[[i]], mountCount_region5_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
daysSC_region5 = stack(daysSC_region5)
daysSnowCoverMountCount_region5 = addLayer(daysSC_region5, mountCount_region5_red)
names(daysSnowCoverMountCount_region5) = c(wS, "mountCount")
# Export the raster
RasterLocation_r1 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", paste(paste("daysSnowCoverMountCount_region1", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r2 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", paste(paste("daysSnowCoverMountCount_region2", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r3 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", paste(paste("daysSnowCoverMountCount_region3", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r4 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", paste(paste("daysSnowCoverMountCount_region4", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r5 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", paste(paste("daysSnowCoverMountCount_region5", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
# Write Raster
writeRaster(daysSnowCoverMountCount_region1, RasterLocation_r1, format = "raster", overwrite = TRUE)
writeRaster(daysSnowCoverMountCount_region2, RasterLocation_r2, format = "raster", overwrite = TRUE)
writeRaster(daysSnowCoverMountCount_region3, RasterLocation_r3, format = "raster", overwrite = TRUE)
writeRaster(daysSnowCoverMountCount_region4, RasterLocation_r4, format = "raster", overwrite = TRUE)
writeRaster(daysSnowCoverMountCount_region5, RasterLocation_r5, format = "raster", overwrite = TRUE)
# Growth season region 1
growthSeason_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region1.tif$")
growthSeason_region1 = stack(growthSeason_region1)
growthS_region1 = list()
for(i in 1:nlayers(growthSeason_region1)){
growthS_region1[[i]] = overlay(growthSeason_region1[[i]], mountCount_region1_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
growthS_region1 = stack(growthS_region1)
growthSeasonMountCount_region1 = addLayer(growthS_region1, mountCount_region1_red)
names(growthSeasonMountCount_region1) = c("1957":"2020", "forCount")
# Growth season region 2
growthSeason_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region2.tif$")
growthSeason_region2 = stack(growthSeason_region2)
growthS_region2 = list()
for(i in 1:nlayers(growthSeason_region2)){
growthS_region2[[i]] = overlay(growthSeason_region2[[i]], MCount_region2_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
growthS_region2 = stack(growthS_region2)
growthSeasonMountCount_region2 = addLayer(growthS_region2, MCount_region2_red)
names(growthSeasonMountCount_region2) = c("1957":"2020", "forCount")
# Growth season region 3
growthSeason_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region3.tif$")
growthSeason_region3 = stack(growthSeason_region3)
growthS_region3 = list()
for(i in 1:nlayers(growthSeason_region3)){
growthS_region3[[i]] = overlay(growthSeason_region3[[i]], MCount_region3_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
growthS_region3 = stack(growthS_region3)
growthSeasonMountCount_region3 = addLayer(growthS_region3, MCount_region3_red)
names(growthSeasonMountCount_region3) = c("1957":"2020", "forCount")
# Growth season region 4
growthSeason_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region4.tif$")
growthSeason_region4 = stack(growthSeason_region4)
growthS_region4 = list()
for(i in 1:nlayers(growthSeason_region4)){
growthS_region4[[i]] = overlay(growthSeason_region4[[i]], mountCount_region4_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
growthS_region4 = stack(growthS_region4)
growthSeasonMountCount_region4 = addLayer(growthS_region4, mountCount_region4_red)
names(growthSeasonMountCount_region4) = c("1957":"2020", "forCount")
# Growth season region 5
growthSeason_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region5.tif$")
growthSeason_region5 = stack(growthSeason_region5)
growthS_region5 = list()
for(i in 1:nlayers(growthSeason_region5)){
growthS_region5[[i]] = overlay(growthSeason_region5[[i]], mountCount_region5_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
growthS_region5 = stack(growthS_region5)
growthSeasonMountCount_region5 = addLayer(growthS_region5, mountCount_region5_red)
names(growthSeasonMountCount_region5) = c("1957":"2020", "forCount")
# Export the raster
RasterLocation_r1 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", paste(paste("growthSeasonMountCount_region1", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r2 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", paste(paste("growthSeasonMountCount_region2", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r3 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", paste(paste("growthSeasonMountCount_region3", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r4 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", paste(paste("growthSeasonMountCount_region4", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r5 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", paste(paste("growthSeasonMountCount_region5", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
# NB - The first year 1957 only contain the months Sept - Dec and should not be used in analyses
# Write Raster
writeRaster(growthSeasonMountCount_region1, RasterLocation_r1, format = "raster", overwrite = TRUE)
writeRaster(growthSeasonMountCount_region2, RasterLocation_r2, format = "raster", overwrite = TRUE)
writeRaster(growthSeasonMountCount_region3, RasterLocation_r3, format = "raster", overwrite = TRUE)
writeRaster(growthSeasonMountCount_region4, RasterLocation_r4, format = "raster", overwrite = TRUE)
writeRaster(growthSeasonMountCount_region5, RasterLocation_r5, format = "raster", overwrite = TRUE)
# Winter rain region 1
winterRain_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region1.tif$")
winterRain_region1 = stack(winterRain_region1)
winterR_region1 = list()
for(i in 1:nlayers(winterRain_region1)){
winterR_region1[[i]] = overlay(winterRain_region1[[i]], mountCount_region1_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
winterR_region1 = stack(winterR_region1)
winterRainMountCount_region1 = addLayer(winterR_region1, mountCount_region1_red)
names(winterRainMountCount_region1) = c("1957":"2020", "mountCount")
# Winter rain region 2
winterRain_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region2.tif$")
winterRain_region2 = stack(winterRain_region2)
winterR_region2 = list()
for(i in 1:nlayers(winterRain_region2)){
winterR_region2[[i]] = overlay(winterRain_region2[[i]], MCount_region2_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
winterR_region2 = stack(winterR_region2)
winterRainMountCount_region2 = addLayer(winterR_region2, MCount_region2_red)
names(winterRainMountCount_region2) = c("1957":"2020", "mountCount")
# Winter rain region 3
winterRain_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region3.tif$")
winterRain_region3 = stack(winterRain_region3)
winterR_region3 = list()
for(i in 1:nlayers(winterRain_region3)){
winterR_region3[[i]] = overlay(winterRain_region3[[i]], MCount_region3_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
winterR_region3 = stack(winterR_region3)
winterRainMountCount_region3 = addLayer(winterR_region3, MCount_region3_red)
names(winterRainMountCount_region3) = c("1957":"2020", "mountCount")
# Winter rain region 4
winterRain_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region4.tif$")
winterRain_region4 = stack(winterRain_region4)
winterR_region4 = list()
for(i in 1:nlayers(winterRain_region4)){
winterR_region4[[i]] = overlay(winterRain_region4[[i]], mountCount_region4_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
winterR_region4 = stack(winterR_region4)
winterRainMountCount_region4 = addLayer(winterR_region4, mountCount_region4_red)
names(winterRainMountCount_region4) = c("1957":"2020", "mountCount")
# Winter rain region 5
winterRain_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region5.tif$")
winterRain_region5 = stack(winterRain_region5)
winterR_region5 = list()
for(i in 1:nlayers(winterRain_region5)){
winterR_region5[[i]] = overlay(winterRain_region5[[i]], mountCount_region5_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
winterR_region5 = stack(winterR_region5)
winterRainMountCount_region5 = addLayer(winterR_region5, mountCount_region5_red)
names(winterRainMountCount_region5) = c("1957":"2020", "mountCount")
# Export the raster
RasterLocation_r1 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", paste(paste("winterRainMountCount_region1", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r2 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", paste(paste("winterRainMountCount_region2", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r3 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", paste(paste("winterRainMountCount_region3", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r4 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", paste(paste("winterRainMountCount_region4", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r5 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", paste(paste("winterRainMountCount_region5", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
# Write Raster
writeRaster(winterRainMountCount_region1, RasterLocation_r1, format = "raster", overwrite = TRUE)
writeRaster(winterRainMountCount_region2, RasterLocation_r2, format = "raster", overwrite = TRUE)
writeRaster(winterRainMountCount_region3, RasterLocation_r3, format = "raster", overwrite = TRUE)
writeRaster(winterRainMountCount_region4, RasterLocation_r4, format = "raster", overwrite = TRUE)
writeRaster(winterRainMountCount_region5, RasterLocation_r5, format = "raster", overwrite = TRUE)
# Snow depth region 1
snowDepth_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region1.tif$")
snowDepth_region1 = stack(snowDepth_region1)
snowD_region1 = list()
for(i in 1:nlayers(snowDepth_region1)){
snowD_region1[[i]] = overlay(snowDepth_region1[[i]], mountCount_region1_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
snowD_region1 = stack(snowD_region1)
snowDepthMountCount_region1 = addLayer(snowD_region1, mountCount_region1_red)
winterSeason = c(1957:2020)
wS = c()
for(i in 2:length(winterSeason)){
wS = append(wS, paste(substr(x = winterSeason[i-1], start = 3, stop = 4), substr(x = winterSeason[i], start = 3, stop = 4), sep = "-"))
}
names(snowDepthMountCount_region1) = c(wS, "mountCount")
# Winter rain region 2
snowDepth_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region2.tif$")
snowDepth_region2 = stack(snowDepth_region2)
snowD_region2 = list()
for(i in 1:nlayers(snowDepth_region2)){
snowD_region2[[i]] = overlay(snowDepth_region2[[i]], MCount_region2_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
snowD_region2 = stack(snowD_region2)
snowDepthMountCount_region2 = addLayer(snowD_region2, MCount_region2_red)
names(snowDepthMountCount_region2) = c(wS, "mountCount")
# Winter rain region 3
snowDepth_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region3.tif$")
snowDepth_region3 = stack(snowDepth_region3)
snowD_region3 = list()
for(i in 1:nlayers(snowDepth_region3)){
snowD_region3[[i]] = overlay(snowDepth_region3[[i]], MCount_region3_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
snowD_region3 = stack(snowD_region3)
snowDepthMountCount_region3 = addLayer(snowD_region3, MCount_region3_red)
names(snowDepthMountCount_region3) = c(wS, "mountCount")
# Winter rain region 4
snowDepth_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region4.tif$")
snowDepth_region4 = stack(snowDepth_region4)
snowD_region4 = list()
for(i in 1:nlayers(snowDepth_region4)){
snowD_region4[[i]] = overlay(snowDepth_region4[[i]], mountCount_region4_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
snowD_region4 = stack(snowD_region4)
snowDepthMountCount_region4 = addLayer(snowD_region4, mountCount_region4_red)
names(snowDepthMountCount_region4) = c(wS, "mountCount")
# Winter rain region 5
snowDepth_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region5.tif$")
snowDepth_region5 = stack(snowDepth_region5)
snowD_region5 = list()
for(i in 1:nlayers(snowDepth_region5)){
snowD_region5[[i]] = overlay(snowDepth_region5[[i]], mountCount_region5_red, fun = function(x, y){
x[y <= 21000] = NA; x # Use only cells that consist of more than 50% mountain
})
}
snowD_region5 = stack(snowD_region5)
snowDepthMountCount_region5 = addLayer(snowD_region5, mountCount_region5_red)
names(snowDepthMountCount_region5) = c(wS, "mountCount")
# Export the raster
RasterLocation_r1 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", paste(paste("snowDepthMountCount_region1", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r2 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", paste(paste("snowDepthMountCount_region2", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r3 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", paste(paste("snowDepthMountCount_region3", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r4 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", paste(paste("snowDepthMountCount_region4", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
RasterLocation_r5 = paste("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", paste(paste("snowDepthMountCount_region5", 1957, 2020, sep = "_"), ".grd", sep = ""), sep = "")
# Write Raster
writeRaster(snowDepthMountCount_region1, RasterLocation_r1, format = "raster", overwrite = TRUE)
writeRaster(snowDepthMountCount_region2, RasterLocation_r2, format = "raster", overwrite = TRUE)
writeRaster(snowDepthMountCount_region3, RasterLocation_r3, format = "raster", overwrite = TRUE)
writeRaster(snowDepthMountCount_region4, RasterLocation_r4, format = "raster", overwrite = TRUE)
writeRaster(snowDepthMountCount_region5, RasterLocation_r5, format = "raster", overwrite = TRUE)
# Region 1
sumPrecipMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
sumPrecipMountCount_region1 = stack(sumPrecipMountCount_region1)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(sumPrecipMountCount_region1[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
sumPrecip_val = data.frame(matrix(c(rep("Nord-Norge", 64), rep("nedbør", 64), rep("mm", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(sumPrecip_val) = columnNames
# Region 2
sumPrecipMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
sumPrecipMountCount_region2 = stack(sumPrecipMountCount_region2)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(sumPrecipMountCount_region2[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
sumPrecip_val_region2 = data.frame(matrix(c(rep("Midt-Norge", 64), rep("nedbør", 64), rep("mm", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(sumPrecip_val_region2) = columnNames
sumPrecip_val = rbind(sumPrecip_val, sumPrecip_val_region2)
# Region 3
sumPrecipMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
sumPrecipMountCount_region3 = stack(sumPrecipMountCount_region3)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(sumPrecipMountCount_region3[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
sumPrecip_val_region3 = data.frame(matrix(c(rep("Østlandet", 64), rep("nedbør", 64), rep("mm", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(sumPrecip_val_region3) = columnNames
sumPrecip_val = rbind(sumPrecip_val, sumPrecip_val_region3)
# Region 4
sumPrecipMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
sumPrecipMountCount_region4 = stack(sumPrecipMountCount_region4)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(sumPrecipMountCount_region4[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
sumPrecip_val_region4 = data.frame(matrix(c(rep("Vestlandet", 64), rep("nedbør", 64), rep("mm", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(sumPrecip_val_region4) = columnNames
sumPrecip_val = rbind(sumPrecip_val, sumPrecip_val_region4)
# Region 5
sumPrecipMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
sumPrecipMountCount_region5 = stack(sumPrecipMountCount_region5)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(sumPrecipMountCount_region5[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
sumPrecip_val_region5 = data.frame(matrix(c(rep("Sørlandet", 64), rep("nedbør", 64), rep("mm", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(sumPrecip_val_region5) = columnNames
sumPrecip_val = rbind(sumPrecip_val, sumPrecip_val_region5)
write_xlsx(sumPrecip_val, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/medianNedbør.xlsx")
# Region 1
# normalSP_r1 = sumPrecipMountCount_region1[[5:34]]
# normalSP_r1_med = median(values(normalSP_r1), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(sumPrecipMountCount_region1[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalSP_r1_med
# diff = append(diff, temp_diff)
#
# }
#
# nSP_r1_SD_plus = normalSP_r1_med + (2*sd(med[5:34]))
# nSP_r1_SD_min = normalSP_r1_med - (2*sd(med[5:34]))
# sumPrecip_med = data.frame(matrix(c("norge-norge", "sumPrecip", normalSP_r1_med, nSP_r1_SD_min, nSP_r1_SD_plus), nrow = 1))
# colnames(sumPrecip_med) = c("area", "variable", "norm_med", "norm_-2SD", "norm_+2SD")
#
# sumPrecip_diff = data.frame(c(1957:2020),matrix(rep(NA, 64*5), nrow = 64, ncol = 5))
# columnNames = c("year","nord-norge", "midt-norge", "østlandet", "vestlandet", "sørlandet")
# colnames(sumPrecip_diff) = columnNames
# sumPrecip_diff[, 2] = diff
# Region 2
# normalSP_r2 = sumPrecipMountCount_region2[[5:34]]
# normalSP_r2_med = median(values(normalSP_r2), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(sumPrecipMountCount_region2[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalSP_r2_med
# diff = append(diff, temp_diff)
#
# }
#
# nSP_r2_SD_plus = normalSP_r2_med + (2*sd(med[5:34]))
# nSP_r2_SD_min = normalSP_r2_med - (2*sd(med[5:34]))
#
# sumPrecip_diff[, 3] = diff
# sumPrecip_med = rbind(sumPrecip_med, c("midt-norge", "sumPrecip", normalSP_r2_med, nSP_r2_SD_min, nSP_r2_SD_plus))
#
# # Region 3
# normalSP_r3 = sumPrecipMountCount_region3[[5:34]]
# normalSP_r3_med = median(values(normalSP_r3), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(sumPrecipMountCount_region3[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalSP_r3_med
# diff = append(diff, temp_diff)
#
# }
#
# nSP_r3_SD_plus = normalSP_r3_med + (2*sd(med[5:34]))
# nSP_r3_SD_min = normalSP_r3_med - (2*sd(med[5:34]))
#
# sumPrecip_diff[, 4] = diff
# sumPrecip_med = rbind(sumPrecip_med, c("østlandet", "sumPrecip", normalSP_r3_med, nSP_r3_SD_min, nSP_r3_SD_plus))
# Region 4
# normalSP_r4 = sumPrecipMountCount_region4[[5:34]]
# normalSP_r4_med = median(values(normalSP_r4), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(sumPrecipMountCount_region4[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalSP_r4_med
# diff = append(diff, temp_diff)
#
# }
#
# nSP_r4_SD_plus = normalSP_r4_med + (2*sd(med[5:34]))
# nSP_r4_SD_min = normalSP_r4_med - (2*sd(med[5:34]))
#
# sumPrecip_diff[, 5] = diff
# sumPrecip_med = rbind(sumPrecip_med, c("vestlandet", "sumPrecip", normalSP_r4_med, nSP_r4_SD_min, nSP_r4_SD_plus))
#
# # Region 5
# normalSP_r5 = sumPrecipMountCount_region5[[5:34]]
# normalSP_r5_med = median(values(normalSP_r5), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(sumPrecipMountCount_region5[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalSP_r5_med
# diff = append(diff, temp_diff)
#
# }
#
# nSP_r5_SD_plus = normalSP_r5_med + (2*sd(med[5:34]))
# nSP_r5_SD_min = normalSP_r5_med - (2*sd(med[5:34]))
#
# sumPrecip_diff[, 6] = diff
# sumPrecip_med = rbind(sumPrecip_med, c("sørlandet", "sumPrecip", normalSP_r5_med, nSP_r5_SD_min, nSP_r5_SD_plus))
#
# sumPrecip_diff$variable = "sumPrecip"
#write_xlsx(sumPrecip_diff, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/sumPrecip_diff.xlsx")
#write_xlsx(sumPrecip_med, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Sum nedbør/sumPrecip_med.xlsx")
# Region 1
daysPrecipMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
daysPrecipMountCount_region1 = stack(daysPrecipMountCount_region1)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(daysPrecipMountCount_region1[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
daysPrecip_val = data.frame(matrix(c(rep("Nord-Norge", 64), rep("nedbør", 64), rep("dager", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(daysPrecip_val) = columnNames
# Region 2
daysPrecipMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
daysPrecipMountCount_region2 = stack(daysPrecipMountCount_region2)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(daysPrecipMountCount_region2[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
daysPrecip_val_region2 = data.frame(matrix(c(rep("Midt-Norge", 64), rep("nedbør", 64), rep("dager", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(daysPrecip_val_region2) = columnNames
daysPrecip_val = rbind(daysPrecip_val, daysPrecip_val_region2)
# Region 3
daysPrecipMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
daysPrecipMountCount_region3 = stack(daysPrecipMountCount_region3)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(daysPrecipMountCount_region3[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
daysPrecip_val_region3 = data.frame(matrix(c(rep("Østlandet", 64), rep("nedbør", 64), rep("dager", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(daysPrecip_val_region3) = columnNames
daysPrecip_val = rbind(daysPrecip_val, daysPrecip_val_region3)
# Region 4
daysPrecipMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
daysPrecipMountCount_region4 = stack(daysPrecipMountCount_region4)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(daysPrecipMountCount_region4[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
daysPrecip_val_region4 = data.frame(matrix(c(rep("Vestlandet", 64), rep("nedbør", 64), rep("dager", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(daysPrecip_val_region4) = columnNames
daysPrecip_val = rbind(daysPrecip_val, daysPrecip_val_region4)
# Region 5
daysPrecipMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
daysPrecipMountCount_region5 = stack(daysPrecipMountCount_region5)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(daysPrecipMountCount_region5[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
daysPrecip_val_region5 = data.frame(matrix(c(rep("Sørlandet", 64), rep("nedbør", 64), rep("dager", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(daysPrecip_val_region5) = columnNames
daysPrecip_val = rbind(daysPrecip_val, daysPrecip_val_region5)
write_xlsx(daysPrecip_val, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/medianNedbør_dager.xlsx")
#
# # Region 1
# normalDP_r1 = daysPrecipMountCount_region1[[5:34]]
# normalDP_r1_med = median(values(normalDP_r1), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(daysPrecipMountCount_region1[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalDP_r1_med
# diff = append(diff, temp_diff)
#
# }
#
# nDP_r1_SD_plus = normalDP_r1_med + (2*sd(med[5:34]))
# nDP_r1_SD_min = normalDP_r1_med - (2*sd(med[5:34]))
# daysPrecip_med = data.frame(matrix(c("nord-norge", "daysPrecip", normalDP_r1_med, nDP_r1_SD_min, nDP_r1_SD_plus), nrow = 1))
# colnames(daysPrecip_med) = c("area", "variable", "norm_med", "norm_-2SD", "norm_+2SD")
#
# daysPrecip_diff = data.frame(c(1957:2020),matrix(rep(NA, 64*5), nrow = 64, ncol = 5))
# columnNames = c("year","nord-norge", "midt-norge", "østlandet", "vestlandet", "sørlandet")
# colnames(daysPrecip_diff) = columnNames
# daysPrecip_diff[, 2] = diff
#
# # Region 2
# normalDP_r2 = daysPrecipMountCount_region2[[5:34]]
# normalDP_r2_med = median(values(normalDP_r2), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(daysPrecipMountCount_region2[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalDP_r2_med
# diff = append(diff, temp_diff)
#
# }
#
# nDP_r2_SD_plus = normalDP_r2_med + (2*sd(med[5:34]))
# nDP_r2_SD_min = normalDP_r2_med - (2*sd(med[5:34]))
#
# daysPrecip_diff[, 3] = diff
# daysPrecip_med = rbind(daysPrecip_med, c("midt-norge", "daysPrecip", normalDP_r2_med, nDP_r2_SD_min, nDP_r2_SD_plus))
#
# # Region 3
# normalDP_r3 = daysPrecipMountCount_region3[[5:34]]
# normalDP_r3_med = median(values(normalDP_r3), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(daysPrecipMountCount_region3[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalDP_r3_med
# diff = append(diff, temp_diff)
#
# }
#
# nDP_r3_SD_plus = normalDP_r3_med + (2*sd(med[5:34]))
# nDP_r3_SD_min = normalDP_r3_med - (2*sd(med[5:34]))
#
# daysPrecip_diff[, 4] = diff
# daysPrecip_med = rbind(daysPrecip_med, c("østlandet", "daysPrecip", normalDP_r3_med, nDP_r3_SD_min, nDP_r3_SD_plus))
#
# # Region 4
# normalDP_r4 = daysPrecipMountCount_region4[[5:34]]
# normalDP_r4_med = median(values(normalDP_r4), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(daysPrecipMountCount_region4[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalDP_r4_med
# diff = append(diff, temp_diff)
#
# }
#
# nDP_r4_SD_plus = normalDP_r4_med + (2*sd(med[5:34]))
# nDP_r4_SD_min = normalDP_r4_med - (2*sd(med[5:34]))
#
# daysPrecip_diff[, 5] = diff
# daysPrecip_med = rbind(daysPrecip_med, c("vestlandet", "daysPrecip", normalDP_r4_med, nDP_r4_SD_min, nDP_r4_SD_plus))
#
# # Region 5
# normalDP_r5 = daysPrecipMountCount_region5[[5:34]]
# normalDP_r5_med = median(values(normalDP_r5), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(daysPrecipMountCount_region5[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalDP_r5_med
# diff = append(diff, temp_diff)
#
# }
#
# nDP_r5_SD_plus = normalDP_r5_med + (2*sd(med[5:34]))
# nDP_r5_SD_min = normalDP_r5_med - (2*sd(med[5:34]))
#
# daysPrecip_diff[, 6] = diff
# daysPrecip_med = rbind(daysPrecip_med, c("sørlandet", "daysPrecip", normalDP_r5_med, nDP_r5_SD_min, nDP_r5_SD_plus))
#
# daysPrecip_diff$variable = "daysPrecip"
#write_xlsx(daysPrecip_diff, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/daysPrecip_diff.xlsx")
#write_xlsx(daysPrecip_med, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Dager med nedbør/daysPrecip_med.xlsx")
# Region 1
meanSummerMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
meanSummerMountCount_region1 = stack(meanSummerMountCount_region1)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(meanSummerMountCount_region1[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
meanSummer_val = data.frame(matrix(c(rep("Nord-Norge", 64), rep("gjennomsnittlig sommertemperatur", 64), rep("grader celsius", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanSummer_val) = columnNames
# Region 2
meanSummerMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
meanSummerMountCount_region2 = stack(meanSummerMountCount_region2)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(meanSummerMountCount_region2[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
meanSummer_val_region2 = data.frame(matrix(c(rep("Midt-Norge", 64), rep("gjennomsnittlig sommertemperatur", 64), rep("grader celsius", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanSummer_val_region2) = columnNames
meanSummer_val = rbind(meanSummer_val, meanSummer_val_region2)
# Region 3
meanSummerMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
meanSummerMountCount_region3 = stack(meanSummerMountCount_region3)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(meanSummerMountCount_region3[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
meanSummer_val_region3 = data.frame(matrix(c(rep("Østlandet", 64), rep("gjennomsnittlig sommertemperatur", 64), rep("grader celsius", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanSummer_val_region3) = columnNames
meanSummer_val = rbind(meanSummer_val, meanSummer_val_region3)
# Region 4
meanSummerMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
meanSummerMountCount_region4 = stack(meanSummerMountCount_region4)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(meanSummerMountCount_region4[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
meanSummer_val_region4 = data.frame(matrix(c(rep("Vestlandet", 64), rep("gjennomsnittlig sommertemperatur", 64), rep("grader celsius", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanSummer_val_region4) = columnNames
meanSummer_val = rbind(meanSummer_val, meanSummer_val_region4)
# Region 5
meanSummerMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
meanSummerMountCount_region5 = stack(meanSummerMountCount_region5)
years = c(1:64)
med = c()
for(i in years){
temp_med = median(values(meanSummerMountCount_region5[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
meanSummer_val_region5 = data.frame(matrix(c(rep("Sørlandet", 64), rep("gjennomsnittlig sommertemperatur", 64), rep("grader celsius", 64), 1957:2020, med), nrow = 64, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanSummer_val_region5) = columnNames
meanSummer_val = rbind(meanSummer_val, meanSummer_val_region5)
write_xlsx(meanSummer_val, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/medianMeanSummer.xlsx")
#
# # Region 1
# normalMS_r1 = meanSummerMountCount_region1[[5:34]]
# normalMS_r1_med = median(values(normalMS_r1), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanSummerMountCount_region1[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMS_r1_med
# diff = append(diff, temp_diff)
#
# }
#
# nMS_r1_SD_plus = normalMS_r1_med + (2*sd(med[5:34]))
# nMS_r1_SD_min = normalMS_r1_med - (2*sd(med[5:34]))
# meanSummer_med = data.frame(matrix(c("nord-norge", "meanSummer", normalMS_r1_med, nMS_r1_SD_min, nMS_r1_SD_plus), nrow = 1))
# colnames(meanSummer_med) = c("area", "variable", "norm_med", "norm_-2SD", "norm_+2SD")
#
# meanSummer_diff = data.frame(c(1957:2020),matrix(rep(NA, 64*5), nrow = 64, ncol = 5))
# columnNames = c("year","nord-norge", "midt-norge", "østlandet", "vestlandet", "sørlandet")
# colnames(meanSummer_diff) = columnNames
# meanSummer_diff[, 2] = diff
#
# # Region 2
# normalMS_r2 = meanSummerMountCount_region2[[5:34]]
# normalMS_r2_med = median(values(normalMS_r2), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanSummerMountCount_region2[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMS_r2_med
# diff = append(diff, temp_diff)
#
# }
#
# nMS_r2_SD_plus = normalMS_r2_med + (2*sd(med[5:34]))
# nMS_r2_SD_min = normalMS_r2_med - (2*sd(med[5:34]))
#
# meanSummer_diff[, 3] = diff
# meanSummer_med = rbind(meanSummer_med, c("midt-norge", "meanSummer", normalMS_r2_med, nMS_r2_SD_min, nMS_r2_SD_plus))
#
# # Region 3
# normalMS_r3 = meanSummerMountCount_region3[[5:34]]
# normalMS_r3_med = median(values(normalMS_r3), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanSummerMountCount_region3[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMS_r3_med
# diff = append(diff, temp_diff)
#
# }
#
# nMS_r3_SD_plus = normalMS_r3_med + (2*sd(med[5:34]))
# nMS_r3_SD_min = normalMS_r3_med - (2*sd(med[5:34]))
#
# meanSummer_diff[, 4] = diff
# meanSummer_med = rbind(meanSummer_med, c("østlandet", "meanSummer", normalMS_r3_med, nMS_r3_SD_min, nMS_r3_SD_plus))
#
# # Region 4
# normalMS_r4 = meanSummerMountCount_region4[[5:34]]
# normalMS_r4_med = median(values(normalMS_r4), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanSummerMountCount_region4[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMS_r4_med
# diff = append(diff, temp_diff)
#
# }
#
# nMS_r4_SD_plus = normalMS_r4_med + (2*sd(med[5:34]))
# nMS_r4_SD_min = normalMS_r4_med - (2*sd(med[5:34]))
#
# meanSummer_diff[, 5] = diff
# meanSummer_med = rbind(meanSummer_med, c("vestlandet", "meanSummer", normalMS_r4_med, nMS_r4_SD_min, nMS_r4_SD_plus))
#
# # Region 5
# normalMS_r5 = meanSummerMountCount_region5[[5:34]]
# normalMS_r5_med = median(values(normalMS_r5), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanSummerMountCount_region5[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMS_r5_med
# diff = append(diff, temp_diff)
#
# }
#
# nMS_r5_SD_plus = normalMS_r5_med + (2*sd(med[5:34]))
# nMS_r5_SD_min = normalMS_r5_med - (2*sd(med[5:34]))
#
# meanSummer_diff[, 6] = diff
# meanSummer_med = rbind(meanSummer_med, c("sørlandet", "meanSummer", normalMS_r5_med, nMS_r5_SD_min, nMS_r5_SD_plus))
#
# meanSummer_diff$variable = "meanSummer"
#write_xlsx(meanSummer_diff, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/meanSummer_diff.xlsx")
#write_xlsx(meanSummer_med, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt sommer/meanSummer_med.xlsx")
# Region 1
meanWinterMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
meanWinterMountCount_region1 = stack(meanWinterMountCount_region1)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(meanWinterMountCount_region1[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
meanWinter_val = data.frame(matrix(c(rep("Nord-Norge", 63), rep("gjennomsnittlig vintertemperatur", 63), rep("grader celsius", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanWinter_val) = columnNames
# Region 2
meanWinterMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
meanWinterMountCount_region2 = stack(meanWinterMountCount_region2)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(meanWinterMountCount_region2[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
meanWinter_val_region2 = data.frame(matrix(c(rep("Midt-Norge", 63), rep("gjennomsnittlig vintertemperatur", 63), rep("grader celsius", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanWinter_val_region2) = columnNames
meanWinter_val = rbind(meanWinter_val, meanWinter_val_region2)
# Region 3
meanWinterMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
meanWinterMountCount_region3 = stack(meanWinterMountCount_region3)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(meanWinterMountCount_region3[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
meanWinter_val_region3 = data.frame(matrix(c(rep("Østlandet", 63), rep("gjennomsnittlig vintertemperatur", 63), rep("grader celsius", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanWinter_val_region3) = columnNames
meanWinter_val = rbind(meanWinter_val, meanWinter_val_region3)
# Region 4
meanWinterMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
meanWinterMountCount_region4 = stack(meanWinterMountCount_region4)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(meanWinterMountCount_region4[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
meanWinter_val_region4 = data.frame(matrix(c(rep("Vestlandet", 63), rep("gjennomsnittlig vintertemperatur", 63), rep("grader celsius", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanWinter_val_region4) = columnNames
meanWinter_val = rbind(meanWinter_val, meanWinter_val_region4)
# Region 5
meanWinterMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
meanWinterMountCount_region5 = stack(meanWinterMountCount_region5)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(meanWinterMountCount_region5[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
meanWinter_val_region5 = data.frame(matrix(c(rep("Sørlandet", 63), rep("gjennomsnittlig vintertemperatur", 63), rep("grader celsius", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(meanWinter_val_region5) = columnNames
meanWinter_val = rbind(meanWinter_val, meanWinter_val_region5)
write_xlsx(meanWinter_val, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/medianmeanWinter.xlsx")
# # Region 1
# normalMW_r1 = meanWinterMountCount_region1[[5:34]]
# normalMW_r1_med = median(values(normalMW_r1), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanWinterMountCount_region1[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMW_r1_med
# diff = append(diff, temp_diff)
#
# }
#
# nMW_r1_SD_plus = normalMW_r1_med + (2*sd(med[5:34]))
# nMW_r1_SD_min = normalMW_r1_med - (2*sd(med[5:34]))
# meanWinter_med = data.frame(matrix(c("nord-norge", "meanWinter", normalMW_r1_med, nMW_r1_SD_min, nMW_r1_SD_plus), nrow = 1))
# colnames(meanWinter_med) = c("area", "variable", "norm_med", "norm_-2SD", "norm_+2SD")
#
# meanWinter_diff = data.frame(c(1957:2020),matrix(rep(NA, 64*5), nrow = 64, ncol = 5))
# columnNames = c("year","nord-norge", "midt-norge", "østlandet", "vestlandet", "sørlandet")
# colnames(meanWinter_diff) = columnNames
# meanWinter_diff[, 2] = diff
#
# # Region 2
# normalMW_r2 = meanWinterMountCount_region2[[5:34]]
# normalMW_r2_med = median(values(normalMW_r2), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanWinterMountCount_region2[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMW_r2_med
# diff = append(diff, temp_diff)
#
# }
#
# nMW_r2_SD_plus = normalMW_r2_med + (2*sd(med[5:34]))
# nMW_r2_SD_min = normalMW_r2_med - (2*sd(med[5:34]))
#
# meanWinter_diff[, 3] = diff
# meanWinter_med = rbind(meanWinter_med, c("midt-norge", "meanWinter", normalMW_r2_med, nMW_r2_SD_min, nMW_r2_SD_plus))
#
# # Region 3
# normalMW_r3 = meanWinterMountCount_region3[[5:34]]
# normalMW_r3_med = median(values(normalMW_r3), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanWinterMountCount_region3[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMW_r3_med
# diff = append(diff, temp_diff)
#
# }
#
# nMW_r3_SD_plus = normalMW_r3_med + (2*sd(med[5:34]))
# nMW_r3_SD_min = normalMW_r3_med - (2*sd(med[5:34]))
#
# meanWinter_diff[, 4] = diff
# meanWinter_med = rbind(meanWinter_med, c("østlandet", "meanWinter", normalMW_r3_med, nMW_r3_SD_min, nMW_r3_SD_plus))
#
# # Region 4
# normalMW_r4 = meanWinterMountCount_region4[[5:34]]
# normalMW_r4_med = median(values(normalMW_r4), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanWinterMountCount_region4[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMW_r4_med
# diff = append(diff, temp_diff)
#
# }
#
# nMW_r4_SD_plus = normalMW_r4_med + (2*sd(med[5:34]))
# nMW_r4_SD_min = normalMW_r4_med - (2*sd(med[5:34]))
#
# meanWinter_diff[, 5] = diff
# meanWinter_med = rbind(meanWinter_med, c("vestlandet", "meanWinter", normalMW_r4_med, nMW_r4_SD_min, nMW_r4_SD_plus))
#
# # Region 5
# normalMW_r5 = meanWinterMountCount_region5[[5:34]]
# normalMW_r5_med = median(values(normalMW_r5), na.rm = TRUE)
#
# years = c(1:64)
# med = c()
# diff = c()
# for(i in years){
#
# temp_med = median(values(meanWinterMountCount_region5[[i]]), na.rm = TRUE)
# med = append(med, temp_med)
#
# temp_diff = temp_med - normalMW_r5_med
# diff = append(diff, temp_diff)
#
# }
#
# nMW_r5_SD_plus = normalMW_r5_med + (2*sd(med[5:34]))
# nMW_r5_SD_min = normalMW_r5_med - (2*sd(med[5:34]))
#
# meanWinter_diff[, 6] = diff
# meanWinter_med = rbind(meanWinter_med, c("sørlandet", "meanWinter", normalMW_r5_med, nMW_r5_SD_min, nMW_r5_SD_plus))
#
# meanWinter_diff$variable = "meanWinter"
#write_xlsx(meanWinter_diff, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/meanWinter_diff.xlsx")
#write_xlsx(meanWinter_med, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Gjennomsnitt vinter/meanWinter_med.xlsx")
# Region 1
snowCoverMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
snowCoverMountCount_region1 = stack(snowCoverMountCount_region1)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(snowCoverMountCount_region1[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
snowCover_val = data.frame(matrix(c(rep("Nord-Norge", 63), rep("snødekke", 63), rep("dager", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowCover_val) = columnNames
# Region 2
snowCoverMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
snowCoverMountCount_region2 = stack(snowCoverMountCount_region2)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(snowCoverMountCount_region2[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
snowCover_val_region2 = data.frame(matrix(c(rep("Midt-Norge", 63), rep("snødekke", 63), rep("dager", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowCover_val_region2) = columnNames
snowCover_val = rbind(snowCover_val, snowCover_val_region2)
# Region 3
snowCoverMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
snowCoverMountCount_region3 = stack(snowCoverMountCount_region3)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(snowCoverMountCount_region3[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
snowCover_val_region3 = data.frame(matrix(c(rep("Østlandet", 63), rep("snødekke", 63), rep("dager", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowCover_val_region3) = columnNames
snowCover_val = rbind(snowCover_val, snowCover_val_region3)
# Region 4
snowCoverMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
snowCoverMountCount_region4 = stack(snowCoverMountCount_region4)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(snowCoverMountCount_region4[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
snowCover_val_region4 = data.frame(matrix(c(rep("Vestlandet", 63), rep("snødekke", 63), rep("dager", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowCover_val_region4) = columnNames
snowCover_val = rbind(snowCover_val, snowCover_val_region4)
# Region 5
snowCoverMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
snowCoverMountCount_region5 = stack(snowCoverMountCount_region5)
years = c(1:63)
med = c()
winterSeason = c(1957:2020)
ws = c()
for(i in years){
temp_med = median(values(snowCoverMountCount_region5[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
snowCover_val_region5 = data.frame(matrix(c(rep("Sørlandet", 63), rep("snødekke", 63), rep("dager", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowCover_val_region5) = columnNames
snowCover_val = rbind(snowCover_val, snowCover_val_region5)
write_xlsx(snowCover_val, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/mediansnowCover.xlsx")
# # Load data
# daysSnowCoverMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
# daysSnowCoverMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
# daysSnowCoverMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
# daysSnowCoverMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
# daysSnowCoverMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
#
# daysSnowCoverMountCount_region1 = stack(daysSnowCoverMountCount_region1)
# daysSnowCoverMountCount_region2 = stack(daysSnowCoverMountCount_region2)
# daysSnowCoverMountCount_region3 = stack(daysSnowCoverMountCount_region3)
# daysSnowCoverMountCount_region4 = stack(daysSnowCoverMountCount_region4)
# daysSnowCoverMountCount_region5 = stack(daysSnowCoverMountCount_region5)
# snowCover_vec = c(daysSnowCoverMountCount_region1, daysSnowCoverMountCount_region2, daysSnowCoverMountCount_region3, daysSnowCoverMountCount_region4, daysSnowCoverMountCount_region5)
#
# diff_vec = list()
# for(i in 1:5){
# norm_snowCover = snowCover_vec[[i]][[5:34]] # normal period
# curr_snowCover = snowCover_vec[[i]][[59:63]] # current period
# temp_vec = c()
#
# for(j in 1:10000){
# norm_samp = sample(c(1:30), 1)
# curr_samp = sample(c(1:5), 1)
#
# temp_norm = median(values(norm_snowCover[[norm_samp]]), na.rm = TRUE) # median for random year in the normal period
# temp_curr = median(values(curr_snowCover[[curr_samp]]), na.rm = TRUE) # median for random year in the current period
#
# temp_diff = temp_curr - temp_norm
# temp_vec = append(temp_vec, temp_diff)
# }
# diff_vec[[i]] = temp_vec
# }
# snowCover_r1 = diff_vec[[1]]
# snowCover_r2 = diff_vec[[2]]
# snowCover_r3 = diff_vec[[3]]
# snowCover_r4 = diff_vec[[4]]
# snowCover_r5 = diff_vec[[5]]
# snowCover_df = cbind(snowCover_r1, snowCover_r2, snowCover_r3, snowCover_r4, snowCover_r5)
# snowCover_df = data.frame(snowCover_df)
# snowCover_df = as_tibble(snowCover_df) %>% rename("nord-norge" = snowCover_r1, "midt-norge" = snowCover_r2, "østlandet" = snowCover_r3, "vestlandet" = snowCover_r4, "sørlandet" = snowCover_r5) %>% mutate(variable = "snowCover")
# #write_xlsx(snowCover_df, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødekning/snowCover_diff.xlsx")
# Region 1
growthSeasonMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
growthSeasonMountCount_region1 = stack(growthSeasonMountCount_region1)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(growthSeasonMountCount_region1[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
growthSeason_val = data.frame(matrix(c(rep("Nord-Norge", 63), rep("vekstsesong", 63), rep("dager", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(growthSeason_val) = columnNames
# Region 2
growthSeasonMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
growthSeasonMountCount_region2 = stack(growthSeasonMountCount_region2)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(growthSeasonMountCount_region2[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
growthSeason_val_region2 = data.frame(matrix(c(rep("Midt-Norge", 63), rep("vekstsesong", 63), rep("dager", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(growthSeason_val_region2) = columnNames
growthSeason_val = rbind(growthSeason_val, growthSeason_val_region2)
# Region 3
growthSeasonMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
growthSeasonMountCount_region3 = stack(growthSeasonMountCount_region3)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(growthSeasonMountCount_region3[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
growthSeason_val_region3 = data.frame(matrix(c(rep("Østlandet", 63), rep("vekstsesong", 63), rep("dager", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(growthSeason_val_region3) = columnNames
growthSeason_val = rbind(growthSeason_val, growthSeason_val_region3)
# Region 4
growthSeasonMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
growthSeasonMountCount_region4 = stack(growthSeasonMountCount_region4)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(growthSeasonMountCount_region4[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
growthSeason_val_region4 = data.frame(matrix(c(rep("Vestlandet", 63), rep("vekstsesong", 63), rep("dager", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(growthSeason_val_region4) = columnNames
growthSeason_val = rbind(growthSeason_val, growthSeason_val_region4)
# Region 5
growthSeasonMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
growthSeasonMountCount_region5 = stack(growthSeasonMountCount_region5)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(growthSeasonMountCount_region5[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
growthSeason_val_region5 = data.frame(matrix(c(rep("Sørlandet", 63), rep("vekstsesong", 63), rep("dager", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(growthSeason_val_region5) = columnNames
growthSeason_val = rbind(growthSeason_val, growthSeason_val_region5)
write_xlsx(growthSeason_val, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/growthSeason_med.xlsx")
# # Load data
# growthSeasonMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
# growthSeasonMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
# growthSeasonMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
# growthSeasonMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
# growthSeasonMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
#
# # Stack the rasters
# growthSeasonMountCount_region1 = stack(growthSeasonMountCount_region1)
# growthSeasonMountCount_region2 = stack(growthSeasonMountCount_region2)
# growthSeasonMountCount_region3 = stack(growthSeasonMountCount_region3)
# growthSeasonMountCount_region4 = stack(growthSeasonMountCount_region4)
# growthSeasonMountCount_region5 = stack(growthSeasonMountCount_region5)
# growthSeason_vec = c(growthSeasonMountCount_region1, growthSeasonMountCount_region2, growthSeasonMountCount_region3, growthSeasonMountCount_region4, growthSeasonMountCount_region5)
#
# # Create normal period and current period for each region
# diff_vec = list()
# for(i in 1:5){
# norm_growthSeason = growthSeason_vec[[i]][[5:34]] # normal period
# curr_growthSeason = growthSeason_vec[[i]][[60:64]] # current period
# temp_vec = c()
#
# for(j in 1:10000){
# norm_samp = sample(c(1:30), 1)
# curr_samp = sample(c(1:5), 1)
#
# temp_norm = median(values(norm_growthSeason[[norm_samp]]), na.rm = TRUE) # median for random year in the normal period
# temp_curr = median(values(curr_growthSeason[[curr_samp]]), na.rm = TRUE) # median for random year in the current period
#
# temp_diff = temp_curr - temp_norm
# temp_vec = append(temp_vec, temp_diff)
# }
# diff_vec[[i]] = temp_vec
# }
# growthSeason_r1 = diff_vec[[1]]
# growthSeason_r2 = diff_vec[[2]]
# growthSeason_r3 = diff_vec[[3]]
# growthSeason_r4 = diff_vec[[4]]
# growthSeason_r5 = diff_vec[[5]]
# growthSeason_df = cbind(growthSeason_r1, growthSeason_r2, growthSeason_r3, growthSeason_r4, growthSeason_r5)
# growthSeason_df = data.frame(growthSeason_df)
# growthSeason_df = as_tibble(growthSeason_df) %>% rename("nord-norge" = growthSeason_r1, "midt-norge" = growthSeason_r2, "østlandet" = growthSeason_r3, "vestlandet" = growthSeason_r4, "sørlandet" = growthSeason_r5) %>% mutate(variable = "growthSeason")
# #write_xlsx(growthSeason_df, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vekstsesong/growthSeason_diff.xlsx")
# Region 1
winterRainMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
winterRainMountCount_region1 = stack(winterRainMountCount_region1)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(winterRainMountCount_region1[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
winterRain_val = data.frame(matrix(c(rep("Nord-Norge", 63), rep("vinterregn", 63), rep("mm", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(winterRain_val) = columnNames
# Region 2
winterRainMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
winterRainMountCount_region2 = stack(winterRainMountCount_region2)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(winterRainMountCount_region2[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
winterRain_val_region2 = data.frame(matrix(c(rep("Midt-Norge", 63), rep("Vinterregn", 63), rep("mm", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(winterRain_val_region2) = columnNames
winterRain_val = rbind(winterRain_val, winterRain_val_region2)
# Region 3
winterRainMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
winterRainMountCount_region3 = stack(winterRainMountCount_region3)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(winterRainMountCount_region3[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
winterRain_val_region3 = data.frame(matrix(c(rep("Østlandet", 63), rep("Vinterregn", 63), rep("mm", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(winterRain_val_region3) = columnNames
winterRain_val = rbind(winterRain_val, winterRain_val_region3)
# Region 4
winterRainMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
winterRainMountCount_region4 = stack(winterRainMountCount_region4)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(winterRainMountCount_region4[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
winterRain_val_region4 = data.frame(matrix(c(rep("Vestlandet", 63), rep("Vinterregn", 63), rep("mm", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(winterRain_val_region4) = columnNames
winterRain_val = rbind(winterRain_val, winterRain_val_region4)
# Region 5
winterRainMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
winterRainMountCount_region5 = stack(winterRainMountCount_region5)
years = c(1:64)
med = c()
for(i in 2:length(years)){
temp_med = median(values(winterRainMountCount_region5[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
winterRain_val_region5 = data.frame(matrix(c(rep("Sørlandet", 63), rep("Vinterregn", 63), rep("mm", 63), 1958:2020, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(winterRain_val_region5) = columnNames
winterRain_val = rbind(winterRain_val, winterRain_val_region5)
winterRain_val$value = as.numeric(winterRain_val$value) / 10
write_xlsx(winterRain_val, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/winterRain_med.xlsx")
# # Load data
# winterRainMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
# winterRainMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
# winterRainMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
# winterRainMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
# winterRainMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
#
# # Stack the rasters
# winterRainMountCount_region1 = stack(winterRainMountCount_region1)
# winterRainMountCount_region2 = stack(winterRainMountCount_region2)
# winterRainMountCount_region3 = stack(winterRainMountCount_region3)
# winterRainMountCount_region4 = stack(winterRainMountCount_region4)
# winterRainMountCount_region5 = stack(winterRainMountCount_region5)
#
# # Set condition of > 0mm precipitation and > 2 degrees centigrade
# for(i in 1:64){
# vals = values(winterRainMountCount_region1[[i]])
# vals_rows = which(vals == 0)
# vals[vals_rows] = NA
# values(winterRainMountCount_region1[[i]]) = vals
# }
#
# for(i in 1:64){
# vals = values(winterRainMountCount_region2[[i]])
# vals_rows = which(vals == 0)
# vals[vals_rows] = NA
# values(winterRainMountCount_region2[[i]]) = vals
# }
#
# for(i in 1:64){
# vals = values(winterRainMountCount_region3[[i]])
# vals_rows = which(vals == 0)
# vals[vals_rows] = NA
# values(winterRainMountCount_region3[[i]]) = vals
# }
#
# for(i in 1:64){
# vals = values(winterRainMountCount_region4[[i]])
# vals_rows = which(vals == 0)
# vals[vals_rows] = NA
# values(winterRainMountCount_region4[[i]]) = vals
# }
#
# for(i in 1:64){
# vals = values(winterRainMountCount_region5[[i]])
# vals_rows = which(vals == 0)
# vals[vals_rows] = NA
# values(winterRainMountCount_region5[[i]]) = vals
# }
#
#
# winterRain_vec = c(winterRainMountCount_region1, winterRainMountCount_region2, winterRainMountCount_region3, winterRainMountCount_region4, winterRainMountCount_region5)
#
# # Create normal period and current period for each region
# diff_vec = list()
# for(i in 1:5){
# norm_winterRain = winterRain_vec[[i]][[5:34]] # normal period
# curr_winterRain = winterRain_vec[[i]][[60:64]] # current period
# temp_vec = c()
#
# for(j in 1:10000){
# norm_samp = sample(c(1:30), 1)
# curr_samp = sample(c(1:5), 1)
#
# temp_norm = median(values(norm_winterRain[[norm_samp]]), na.rm = TRUE) # median for random year in the normal period
# temp_curr = median(values(curr_winterRain[[curr_samp]]), na.rm = TRUE) # median for random year in the current period
#
# temp_diff = temp_curr - temp_norm
# temp_vec = append(temp_vec, temp_diff)
# }
# diff_vec[[i]] = temp_vec
# }
# winterRain_r1 = diff_vec[[1]]
# winterRain_r2 = diff_vec[[2]]
# winterRain_r3 = diff_vec[[3]]
# winterRain_r4 = diff_vec[[4]]
# winterRain_r5 = diff_vec[[5]]
# winterRain_df = cbind(winterRain_r1, winterRain_r2, winterRain_r3, winterRain_r4, winterRain_r5)
# winterRain_df = data.frame(winterRain_df)
# winterRain_df = as_tibble(winterRain_df) %>% rename("nord-norge" = winterRain_r1, "midt-norge" = winterRain_r2, "østlandet" = winterRain_r3, "vestlandet" = winterRain_r4, "sørlandet" = winterRain_r5) %>% mutate(variable = "winterRain")
#write_xlsx(winterRain_df, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Vinterregn/winterRain_diff.xlsx")
# Region 1
snowDepthMountCount_region1 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region1_1957_2020.grd")[1]
snowDepthMountCount_region1 = stack(snowDepthMountCount_region1)
years = c(1:63)
winterSeason = c(1957:2020)
ws = c()
med = c()
for(i in years){
temp_med = median(values(snowDepthMountCount_region1[[i]]), na.rm = TRUE)
med = append(med, temp_med)
ws = append(ws, paste(winterSeason[i], winterSeason[i+1], sep = "-"))
}
snowDepth_val = data.frame(matrix(c(rep("Nord-Norge", 63), rep("Snødybde", 63), rep("mm", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowDepth_val) = columnNames
# Region 2
snowDepthMountCount_region2 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region2_1957_2020.grd")[1]
snowDepthMountCount_region2 = stack(snowDepthMountCount_region2)
med = c()
for(i in years){
temp_med = median(values(snowDepthMountCount_region2[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
snowDepth_val_region2 = data.frame(matrix(c(rep("Midt-Norge", 63), rep("Snødybde", 63), rep("mm", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowDepth_val_region2) = columnNames
snowDepth_val = rbind(snowDepth_val, snowDepth_val_region2)
# Region 3
snowDepthMountCount_region3 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region3_1957_2020.grd")[1]
snowDepthMountCount_region3 = stack(snowDepthMountCount_region3)
med = c()
for(i in years){
temp_med = median(values(snowDepthMountCount_region3[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
snowDepth_val_region3 = data.frame(matrix(c(rep("Østlandet", 63), rep("Snødybde", 63), rep("mm", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowDepth_val_region3) = columnNames
snowDepth_val = rbind(snowDepth_val, snowDepth_val_region3)
# Region 4
snowDepthMountCount_region4 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region4_1957_2020.grd")[1]
snowDepthMountCount_region4 = stack(snowDepthMountCount_region4)
med = c()
for(i in years){
temp_med = median(values(snowDepthMountCount_region4[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
snowDepth_val_region4 = data.frame(matrix(c(rep("Vestlandet", 63), rep("Snødybde", 63), rep("mm", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowDepth_val_region4) = columnNames
snowDepth_val = rbind(snowDepth_val, snowDepth_val_region4)
# Region 5
snowDepthMountCount_region5 = list.files("P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/", full.names = TRUE, pattern = "region5_1957_2020.grd")[1]
snowDepthMountCount_region5 = stack(snowDepthMountCount_region5)
med = c()
for(i in years){
temp_med = median(values(snowDepthMountCount_region5[[i]]), na.rm = TRUE)
med = append(med, temp_med)
}
snowDepth_val_region5 = data.frame(matrix(c(rep("Sørlandet", 63), rep("Snødybde", 63), rep("mm", 63), ws, med), nrow = 63, ncol = 5))
columnNames = c("reg", "variable", "unit", "year", "value")
colnames(snowDepth_val_region5) = columnNames
snowDepth_val = rbind(snowDepth_val, snowDepth_val_region5)
write_xlsx(snowDepth_val, "P:/41201042_okologisk_tilstand_fastlandsnorge_2020_dataanaly/fjell2021/data/Klima/Snødybde/snowDepth_med.xlsx")