8 Functional Plant Indicators - Naturally Open Ecosystems


Norwegian name: Planteindikatorer

Author and date:

Joachim Töpper

August 2023


Ecosystem

Økologisk egenskap

ECT class

naturally open below tree line

Primærproduksjon

Functional state characteristic

naturally open below tree line

Abiotiske forhold

Functional state characteristic

Indicators described in this chapter:

  • Grime’s CSR values
  • Light
  • Nitrogen
  • Soil disturbance



8.1 Introduction

Functional plant indicators can be used to describe the functional signature of plant communities by calculating community-weighted means of plant indicator values for plant communities (Diekmann 2003). The functional signature of plant communities may be indicative of ecosystem identity, depending on which functional plant indicator we look at (cf. Töpper et al. 2018). For instance, using an indicator for moisture one would find a functional signature with higher moisture values for plant communities in mires compared to e.g. grasslands or forests. Deviations in the functional signature of such an indicator beyond a certain range of indicator values (as there of course is natural variation of functional signatures within an ecosystem type) may be related to a reduction in ecological condition. Here, we combine functional plant indicator data with field sampled plant community data from the Norwegian nature monitoring programs ANO (Tingstad et al. 2019) and GRUK (Evju et al. 2020) for naturally open ecosystems below tree line (abbreviated as ‘nat-open’ henceforth). We calculate the functional signature of plant communities in the monitored sites with respect to Grime’s CSR values, light, nitrogen, and soil disturbance. These functional signatures are then compared to reference distributions of functional signature, separately for each nat-open ecosystem type, calculated from ‘generalized species lists’ developed for ecosystem types in the Norwegian categorization system for eco-diversity (Halvorsen et al. 2020). These plant functional condition indicators are developed following the principles and technical protocol of the IBECA framework (Jakobsson et al. 2021, Töpper & Jakobsson 2021). Note that deviations from the reference may occur in both directions, e.g. the nitrogen signature from the testing data may be higher or lower than in the reference. Deviations in these two directions indicate very different environmental phenomena and thus have to be treated separately. Therefore, we develop two condition indicators for each functional plant indicator, a lower one and an upper one (see further down for more details).

8.2 About the underlying data

In the ‘functional plant indicator’ project for nat-open ecosystems, we use five sets of data for building indicators for ecological condition:

  • as test data we use plant community data from (1) the ANO monitoring scheme (cf. Tingstad et al. 2019) and (2) from the GRUK monitoring scheme (cf. Evju et al. 2020)
  • as reference data we use (3) generalized species lists developed by Evju et al. (2023) for nat-open ecosystem types
    1. Swedish plant indicator data for light, nitrogen, and soil disturbance from Tyler et al. (2021), and (5) Grime’s CSR values for plant species’ strategies (towards competition, stress, and ruderal conditions)
  1. ANO monitoring data: ANO stands for ‘areal-representativ naturovervåking’, i.e. ‘area representative nature monitoring’. 1000 sites are randomly distributed across mainland Norway and visited within a 5-year cycle. Each ANO site spans a 500 x 500 m grid cell, and the data collection at each ANO site includes up to 18 evenly distributed vegetation analyses in 1 x 1 m plots (up to 18, because some of these evenly distributed points may be in water or otherwise inaccessible). For the vegetation analyses, the cover of each vascular plant species in the plot is recorded. Every vegetation analysis is accompanied by an assessment of the ecosystem the plot lies in, including ecosystem type and some additional variables related to ecosystem-specific drivers of state. In the analysis in this document, we only use the plots which were classified as one of the nat-open ecosystem types in the Norwegian categorization system for eco-diversity (NiN) and which are not registered as lying in mountain areas above the tree line. In the analysis in this document, we use the data available on Miljødirektoratets kartkatalog (https://kartkatalog.miljodirektoratet.no/Dataset/Details/2054), which comprises data from the first three ANO-years, 2019-2021, and a total of 8887 plots in 498 sites.

  2. GRUK monitoring data GRUK stands for ‘Grunnlendt åpen kalkmark’, and represents a monitoring of open, limestone rich ecosystems with soils too shallow for forest establishment. The limestone rich focus of the scheme is motivated from a high biodiversity value and places all monitoring sites in an area around the Oslofjord. As of spring 2023, the GRUK data comprise 596 vegetation plots in 146 sites, all of which are mapped to the ecosystem type “åpen grunnlendt mark” (T2) and therein to the limestone-rich subtypes T2-C-7 and T2-C-8 in the Norwegian classification system for ecosystem types. The vegetation analysis in GRUK records percent cover for every species of vascular plants in 1 m^2 plots. In addition, a range of site variables related to ecosystem-specific drivers of state are recorded. In the analysis in this document, we use all GRUK monitoring data, which span the years 2020-22. The 2022 data also include an assessment of site condition, which is included in the analysis of results in this document. In the future, these data data may become available in Miljødirektoratets kartkatalog.

  3. NiN reference data: The generalized species lists underlying the ecosystem categorization in NiN represent expert-compiled species lists based on empirical evidence from the literature and expert knowledge of the systems and their species. In these lists, every species is assigned an abundance value on a 6-step scale, with each step representing a range for the ‘expected combination of frequency and cover’ of occurrence (1: < 1/32, 2: 1/32 - 1/8 , 3: 1/8 - 3/8, 4: 3/8 - 4/5, 5: 3/8 - 4/5 + dominance, 6: > 4/5). For the purpose of this project, these steps are simplified to maximum ‘expected combination of frequency and cover’, whereby steps 4 & 5 are assigned 0.6 and 0.8, respectively, in order to distinguish between them.

  4. The Swedish plant indicator set published by Tyler et al. (2021) contains a large collection of plant indicators based on the Swedish flora, which is well representative of the Norwegian flora as well. From this set, we decided to include indicator data for light, moisture, pH, nitrogen, phosphorus, grazing_mowing, and soil disturbance for semi-natural ecosystems, as these are thought to be subject to potential change due to abandonment, drainage/flooding, pollution, and erosion.

  5. Grime’s system of plant strategy scores (Grime 1974) comprises relative (too one another) scores for the competition-, stress-, and disturbance(“ruderality”)-related life strategy of plant species. In the analysis in this document, we use all three variables, C, S and R, as different pressures acting on the ecosystem might change every one of the strategies (e.g. alien species for competition, climate change for stress, land use change for ruderality).

8.2.1 Representativity in time and space

For nat-open ecosystems, the ANO data in this analysis contain 143 plots in 52 sites, in principle distributed randomly across the country. As nat-open ecosystems occur more often in certain regions of Norway than in others, the amount of plots and sites is not equal among Norway’s five regions. The 143 plots are distributed across regions in the following way:

  • Northern Norway: 29
  • Central Norway: 39
  • Eastern Norway: 34
  • Western Norway: 24
  • Southern Norway: 17

For GRUK, this analysis covers 1103 plots in 146 sites.

The 1103 plots are distributed across regions in the following way:

  • Northern Norway: 0
  • Central Norway: 0
  • Eastern Norway: 1042
  • Western Norway: 0
  • Southern Norway: 61

8.2.2 Temporal coverage

The ANO evaluation data cover the first three years, 2019-2021, of the first 5-year-cycle in the ANO monitoring scheme. GRUK covers 2020-2022. Thus, there is no actual time series to these data, and the indicator evaluation does therefore not include any temporal analyses.

8.3 Collinearities with other indicators

8.4 Reference state and values

8.4.1 Reference state

The reference state is defined via the functional signature of the generalized species lists for NiN ecosystem types (see also Töpper et al. 2018). For the nat-open ecosystem types these lists have been newly prepared by Evju et al. (2023). By bootstrapping the species lists (see details further below) and calculating community-weighted means of functional plant indicators for every re-sampled community, we describe the reference state as a distribution of indicator values for each respective plant functional indicator. These distributions are calculated for minor ecosystem types (“grunntyper” or “kartleggingsenheter” at a 1:5000 mapping scale) within the major ecosystem types (hovedtyper) in NiN. A more extensive discussion on the use of reference communities can be found in Jakobsson et al. (2020).

8.4.2 Reference values, thresholds for defining good ecological condition, minimum and/or maximum values

In this analysis, we derive scaling values from statistical (here, non-parametric) distributions (see Jakobsson et al. 2010). For each ecosystem sub-type and plant functional indicator, the reference value is defined as the median value of the indicator value distribution. As in most cases the distributions naturally are two-sided (but see the Heat-requirement indicator in the mountain assessment for an example of a one-sided functional plant indicator, Framstad et al. 2022), and deviation from the optimal state thus may occur in both direction (e.g. indicating too low or too high pH), we need to define two threshold values for good ecological condition as well as both a minimum and maximum value. In line with previous assessments of ecological condition for Norwegian forests and mountains, we define a lower and an upper threshold value via the 95% confidence interval of the reference distribution, i.e. its 0.025 and 0.975 quantiles. The minimum and maximum values are given by the minimum and maximum of the possible indicator values for each respective plant functional indicator. For details on the scaling principles in IBECA, please see Töpper & Jakobsson (2021).

8.5 Uncertainties

We can calculate a mean indicator value (after scaling) for every region (or any other delimited area of interest) as well as its corresponding standard error as a measure of spatial uncertainty for a geographical area.

8.6 References

Diekmann, M. 2003. Species indicator values as an important tool in applied plant ecology - a review. Basic and Applied Ecology 4: 493-506, doi:10.1078/1439-1791-00185

Evju, M., Stabbetorp, O.E., Olsen, S.L., Bratli, H., Often, A. & Bakkestuen, V. 2020. Dry calcareous grasslands in the Oslofjord region. A test of monitoring protocols and results for 2020. NINA Report 1910. Norwegian Institute for Nature Research.

Evju, M., Stabbetorp, O.E., Olsen, S.L., Bratli, … . 2023. Generalized species lists for naturally open ecosystem types below the tree line in Norway. in prep.

Framstad, E., Kolstad, A. L., Nybø, S., Töpper, J. & Vandvik, V. 2022. The condition of forest and mountain ecosystems in Norway. Assessment by the IBECA method. NINA Report 2100. Norwegian Institute for Nature Research.

Grime J.P. 1974. Vegetation classification by reference to strategies. Nature 250(5461):26-31.

Halvorsen, R., Skarpaas, O., Bryn, A., Bratli, H., Erikstad, L., Simensen, T., & Lieungh, E. (2020). Towards a systematics of ecodiversity: The EcoSyst framework. Global Ecology and Biogeography, 29(11), 1887-1906. doi:10.1111/geb.13164

Jakobsson, S., Töpper, J.P., Evju, M., Framstad, E., Lyngstad, A., Pedersen, B., Sickel, H., Sverdrup-Thygeson, A., Vandvik. V., Velle, L.G., Aarrestad, P.A. & Nybø, S. 2020. Setting reference levels and limits for good ecological condition in terrestrial ecosystems. Insights from a case study based on the IBECA approach. Ecological Indicators 116: 106492.

Jakobsson, S., Evju, M., Framstad, E., Imbert, A., Lyngstad, A., Sickel, H., Sverdrup-Thygeson, A., Töpper, J., Vandvik, V., Velle, L.G., Aarrestad, P.A. & Nybø, S. 2021. An index-based assessment of ecological condition and its links to international frameworks. Ecological Indicators 124: 107252.

Tingstad, L., Evju, M., Sickel, H., & Töpper, J. 2019. Utvikling av nasjonal arealrepresentativ naturovervåking (ANO). Forslag til gjennomføring, protokoller og kostnadsvurderinger med utgangspunkt i erfaringer fra uttesting i Trøndelag. NINA Rapport 1642.

Töpper, J. & Jakobsson, S. 2021. The Index-Based Ecological Condition Assessment (IBECA) - Technical protocol, version 1.0. NINA Report 1967. Norwegian Institute for Nature Research.

Töpper, J., Velle, L.G. & Vandvik, V. 2018. Developing a method for assessment of ecological state based on indicator values after Ellenberg and Grime (revised edition). NINA Report 1529b. Norwegian Institute for Nature Research.

Tyler, T., Herbertsson, L., Olofsson, J., & Olsson, P. A. 2021. Ecological indicator and traits values for Swedish vascular plants. Ecological In-dicators, 120. doi:10.1016/j.ecolind.2020.106923

8.7 Analyses

8.7.1 Data sets

ANO data: ANO.sp contains the species data, ANO.geo contains site data.

GRUK data: GRUK.species contains the species data, GRUK.variable contains site data, GRUK2021.condition contains a field-based condition assessment from the 2021 season.

Plant indicators from Tyler et al. (2021) and Grime (1974) are saved as ind.Tyler and ind.Grime.

Generalized species lists (reference communities): natopen_NiN_ref contains the reference species lists, natopen_NiN_ref_spInfo contains additional taxonomic information for each species.

8.7.1.1 Data handling

  • Checking for errors
  • Checking species nomenclature in the different species lists to make species and indicator data possible to merge
  • Merging indicator data with monitoring data and indicator data with reference data (not shown here, but documented in the code)

leaving us with the monitoring data including plant indicators (ANO.sp.ind, GRUK.species.ind) and the reference data including plant indicators (NiN.natopen.cov)

head(ANO.sp.ind)
#>      Species art_dekning
#> 1 Abies alba           0
#> 2 Abies alba           0
#> 3 Abies alba           0
#> 4 Abies alba           0
#> 5 Abies alba           0
#> 6 Abies alba           0
#>                           ParentGlobalID CC SS RR Light
#> 1 {CB1796B9-01F5-4109-B44E-4582CA855F93} NA NA NA     2
#> 2 {AB9ED5C2-E906-4C73-B543-EC6CB28B39D5} NA NA NA     2
#> 3 {A660C3D8-C8DD-414D-8B70-80F9A284E34E} NA NA NA     2
#> 4 {142D1B0E-32EE-4FD8-AA12-DBF3A0B2DC54} NA NA NA     2
#> 5 {B7DD61EE-A113-4486-A4B8-D50ACAAC648B} NA NA NA     2
#> 6 {32A9B462-5483-4D47-ADAF-78F11AF201AA} NA NA NA     2
#>   Nitrogen Soil_disturbance
#> 1        5                1
#> 2        5                1
#> 3        5                1
#> 4        5                1
#> 5        5                1
#> 6        5                1
head(GRUK.species.ind)
#>                         ParentGlobalID              Species
#> 1 002ee3d0-f9f5-4760-9580-b71d56748595        Poa compressa
#> 2 002ee3d0-f9f5-4760-9580-b71d56748595 Equisetum sylvaticum
#> 3 002ee3d0-f9f5-4760-9580-b71d56748595 Polygonatum odoratum
#> 4 002ee3d0-f9f5-4760-9580-b71d56748595  Geranium sanguineum
#> 5 002ee3d0-f9f5-4760-9580-b71d56748595     Origanum vulgare
#> 6 002ee3d0-f9f5-4760-9580-b71d56748595        Sonchus asper
#>   art_dekning        CC        SS        RR Light Nitrogen
#> 1         0.1 0.1666667 0.4166667 0.4166667     7        4
#> 2         0.1 0.4166667 0.1666667 0.4166667     4        3
#> 3         1.0 0.5000000 0.5000000 0.0000000     5        3
#> 4         0.1 0.1666667 0.6666667 0.1666667     5        3
#> 5         3.0 0.4166667 0.4166667 0.1666667     6        4
#> 6         1.0 0.2500000 0.0000000 0.7500000     6        7
#>   Soil_disturbance year Flate_ID Punkt_ID
#> 1                5 2020     44-1       NA
#> 2                2 2020     44-1       NA
#> 3                5 2020     44-1       NA
#> 4                2 2020     44-1       NA
#> 5                4 2020     44-1       NA
#> 6                9 2020     44-1       NA
#>   Total dekning % av karplanter registert
#> 1                                     5.3
#> 2                                     5.3
#> 3                                     5.3
#> 4                                     5.3
#> 5                                     5.3
#> 6                                     5.3
#>   Dekning % av karplanter i feltsjikt Dekning % av moser
#> 1                                   4                  0
#> 2                                   4                  0
#> 3                                   4                  0
#> 4                                   4                  0
#> 5                                   4                  0
#> 6                                   4                  0
#>   Dekning % av lav Dekning % av strø
#> 1                0                 8
#> 2                0                 8
#> 3                0                 8
#> 4                0                 8
#> 5                0                 8
#> 6                0                 8
#>   Dekning % av bar jord/grus/stein/berg Kartleggingsenhet
#> 1                                    99            T2-C-7
#> 2                                    99            T2-C-7
#> 3                                    99            T2-C-7
#> 4                                    99            T2-C-7
#> 5                                    99            T2-C-7
#> 6                                    99            T2-C-7
#>   Spor etter ferdsel med tunge kjøretøy (%)
#> 1                                         0
#> 2                                         0
#> 3                                         0
#> 4                                         0
#> 5                                         0
#> 6                                         0
#>   Spor etter slitasje og slitasjebetinget erosjon (%)
#> 1                                                   0
#> 2                                                   0
#> 3                                                   0
#> 4                                                   0
#> 5                                                   0
#> 6                                                   0
#>   Dekning % av nakent berg
#> 1                        7
#> 2                        7
#> 3                        7
#> 4                        7
#> 5                        7
#> 6                        7
#>   Menneskeskapte objekter i sirkelen?
#> 1                                 nei
#> 2                                 nei
#> 3                                 nei
#> 4                                 nei
#> 5                                 nei
#> 6                                 nei
#>   Total dekning % av vedplanter i feltsjikt
#> 1                                         5
#> 2                                         5
#> 3                                         5
#> 4                                         5
#> 5                                         5
#> 6                                         5
#>   Dekning % av busker i busksjikt Dekning % av tresjikt
#> 1                               3                     8
#> 2                               3                     8
#> 3                               3                     8
#> 4                               3                     8
#> 5                               3                     8
#> 6                               3                     8
#>   Dekning % av problemarter
#> 1                        NA
#> 2                        NA
#> 3                        NA
#> 4                        NA
#> 5                        NA
#> 6                        NA
#>   Total dekning % av fremmede arter        x        y
#> 1                                 0 10.73183 59.94773
#> 2                                 0 10.73183 59.94773
#> 3                                 0 10.73183 59.94773
#> 4                                 0 10.73183 59.94773
#> 5                                 0 10.73183 59.94773
#> 6                                 0 10.73183 59.94773
#>                   geometry
#> 1 POINT (261665.7 6653279)
#> 2 POINT (261665.7 6653279)
#> 3 POINT (261665.7 6653279)
#> 4 POINT (261665.7 6653279)
#> 5 POINT (261665.7 6653279)
#> 6 POINT (261665.7 6653279)
head(NiN.natopen.cov)
#>                        sp T1_toerkeutsatte_berg T1-C-11
#> 1    Achillea millefolium                    NA      NA
#> 2       Achillea ptarmica                    NA      NA
#> 3         Acinos arvensis                    NA      NA
#> 4 Aconitum septentrionale                    NA      NA
#> 5          Actaea spicata                    NA      NA
#> 6     Agrimonia eupatoria                    NA      NA
#>   T1-C-12 T1_fosseberg T2-C-1 T2-C-2 T2-C-3 T2-C-4 T2-C-5
#> 1      NA           NA     NA     NA     NA     NA     NA
#> 2      NA           NA     NA     NA     NA     NA     NA
#> 3      NA           NA     NA     NA     NA     NA     NA
#> 4      NA           NA     NA     NA     NA     NA     NA
#> 5      NA           NA     NA     NA     NA     NA     NA
#> 6      NA           NA     NA     NA     NA     NA  0.375
#>   T2-C-6 T2-C-7 T2-C-8 T2-C-7_BN T2-C-8_BN T8-C-1 T8-C-2
#> 1     NA     NA     NA        NA        NA     NA     NA
#> 2     NA     NA     NA        NA        NA     NA     NA
#> 3     NA  0.375  0.375   0.37500   0.37500     NA     NA
#> 4     NA     NA     NA        NA        NA     NA     NA
#> 5     NA     NA     NA        NA        NA     NA     NA
#> 6     NA  0.375     NA   0.03125   0.03125     NA     NA
#>   T8-C-3 T11-C-1 T11-C-2 T12-C-1 T12-C-2 T13-C-1 T13-C-2
#> 1  0.375      NA      NA      NA 0.12500      NA      NA
#> 2     NA      NA      NA      NA 0.03125      NA      NA
#> 3     NA      NA      NA      NA      NA      NA      NA
#> 4     NA      NA      NA      NA      NA      NA      NA
#> 5     NA      NA      NA      NA      NA      NA      NA
#> 6     NA      NA      NA      NA      NA      NA      NA
#>   T13-C-3 T13-C-4 T13-C-5 T13-C-6 T13-C-7 T13-C-8 T13-C-9
#> 1      NA      NA      NA      NA      NA      NA      NA
#> 2      NA      NA      NA      NA      NA      NA      NA
#> 3      NA 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
#> 4      NA      NA      NA      NA      NA      NA      NA
#> 5      NA      NA      NA      NA      NA      NA      NA
#> 6      NA      NA      NA      NA      NA      NA      NA
#>   T13-C-10 T13-C-11 T13-C-12 T13-C-13 T13-C-14 T13-C-15 T15
#> 1       NA       NA       NA       NA       NA       NA  NA
#> 2       NA       NA       NA       NA       NA       NA  NA
#> 3       NA       NA       NA       NA       NA       NA  NA
#> 4       NA       NA       NA       NA       NA       NA  NA
#> 5       NA       NA       NA       NA       NA       NA  NA
#> 6       NA       NA       NA       NA       NA       NA  NA
#>   T15-Bratli21 T16-C-1 T16-C-2 T16-C-3 T16-C-4 T16-C-5
#> 1      0.03125   0.375   0.375      NA      NA      NA
#> 2           NA      NA      NA      NA      NA      NA
#> 3           NA      NA      NA      NA   0.125      NA
#> 4      0.03125      NA      NA      NA      NA      NA
#> 5           NA      NA      NA   0.125   0.125      NA
#> 6           NA      NA      NA      NA      NA      NA
#>   T16-C-6 T16-C-7 T18-C-1 T18-C-2 T18-C-3 T18-C-4 T21-C-1
#> 1      NA      NA      NA      NA      NA      NA   0.125
#> 2      NA      NA   0.125      NA      NA      NA      NA
#> 3      NA      NA      NA      NA      NA      NA      NA
#> 4      NA      NA      NA      NA      NA      NA      NA
#> 5      NA      NA      NA      NA      NA      NA      NA
#> 6      NA      NA      NA      NA      NA      NA      NA
#>   T21-C-2 T21-C-3 T21-C-4 T21-7 T24-C-1_samlet
#> 1   0.375     0.6   0.375 0.375             NA
#> 2      NA      NA      NA    NA             NA
#> 3      NA      NA      NA    NA             NA
#> 4      NA      NA      NA    NA             NA
#> 5      NA      NA      NA    NA             NA
#> 6      NA      NA      NA    NA             NA
#>   T24-C-2_samlet T24-C-1_Moere T24-C-1_Troendelag
#> 1             NA            NA                 NA
#> 2             NA            NA                 NA
#> 3             NA            NA                 NA
#> 4             NA            NA                 NA
#> 5             NA            NA                 NA
#> 6             NA            NA                 NA
#>   T24-C-1_Troms T24-C-1_Finnmark T24-C-2_Moere
#> 1            NA            0.125            NA
#> 2            NA               NA            NA
#> 3            NA               NA            NA
#> 4            NA               NA            NA
#> 5            NA               NA            NA
#> 6            NA               NA            NA
#>   T24-C-2_Troendelag T24-C-2_Troms T24-C-2_Finnmark T29-C-1
#> 1                 NA            NA            0.375      NA
#> 2                 NA            NA               NA      NA
#> 3                 NA            NA               NA      NA
#> 4                 NA            NA               NA      NA
#> 5                 NA            NA               NA      NA
#> 6                 NA            NA               NA      NA
#>   T29-C-2 T29-C-3 T29-C-4 T29-C-5 T29-C-6        Phylum
#> 1 0.80000      NA   0.375 0.03125      NA Magnoliophyta
#> 2 0.03125      NA      NA      NA      NA Magnoliophyta
#> 3      NA     0.6   0.375      NA      NA Magnoliophyta
#> 4      NA      NA      NA      NA      NA Magnoliophyta
#> 5      NA      NA      NA      NA      NA Magnoliophyta
#> 6 0.12500      NA      NA      NA      NA Magnoliophyta
#>                   sp.orig        CC        SS        RR
#> 1    Achillea millefolium 0.3333333 0.3333333 0.3333333
#> 2       Achillea ptarmica 0.4166667 0.4166667 0.1666667
#> 3         Acinos arvensis 0.1666667 0.4166667 0.4166667
#> 4 Aconitum septentrionale        NA        NA        NA
#> 5          Actaea spicata        NA        NA        NA
#> 6     Agrimonia eupatoria 0.3333333 0.3333333 0.3333333
#>   Light Nitrogen Soil_disturbance
#> 1     6        5                2
#> 2     5        4                2
#> 3     7        3                7
#> 4     4        7                2
#> 5     2        6                3
#> 6     5        6                5

For each ecosystem type with a NiN species list, we can calculate a community weighted mean (CWM) for the relevant functional plant indicators. For semi-natural ecosystems, we are testing “Light”, “Moisture”, “Soil_reaction_pH”, “Nitrogen”, “Phosphorus”, “Grazing_mowing”, and “Soil_disturbance”. In order to get distributions of CWMs rather than one single value (for comparison with the empirical testing data), the NiN lists can be bootstrapped.

8.7.1.1.1 bootstrap function for frequency abundance
  • function to calculate community weighted means of selected indicator values (ind)
  • for species lists (sp) with given abundances in percent (or on a scale from 0 to 1) in one or more ‘sites’ (abun)
  • with a given number of iterations (iter),
  • with species given a certain minimum abundance occurring in all bootstraps (obl), and
  • with a given re-sampling ratio of the original species list (rat)
  • in every bootstrap iteration the abundance of the sampled species can be randomly changed by a limited amount if wished by introducing a re-sampling of abundance values from adjacent abundance steps with a certain probability (var.abun)

Running the bootstraps

colnames(NiN.natopen)
# 1st column is the species
# 6th-71st column is the abundances of sp in different ecosystem types
# 74th-79th column is the indicator values of the respective species
# we choose 1000 iterations
# species with abundance 1 (i.e. a max of 100%, must be included in each sample)
# each sample re-samples 1/3 of the number of species
# the abundance of the re-sampled species may vary (see bootstrap function for details)
natopen.ref.cov <- indBoot.freq(sp=NiN.natopen.cov[,1],abun=NiN.natopen.cov[,6:71],ind=NiN.natopen.cov[,74:79],iter=1000,obl=1,rat=1/3,var.abun=T)

### fixing NaN's
for (i in 1:length(natopen.ref.cov) ) {
  for (j in 1:ncol(natopen.ref.cov[[i]]) ) {
    v <- natopen.ref.cov[[i]][,j]
    v[is.nan(v)] <- NA
    natopen.ref.cov[[i]][,j] <- v
  }
}
head(natopen.ref.cov[[1]])
#>      T2-C-1     T2-C-2     T2-C-3     T2-C-4    T2-C-5
#> 1 0.2845850 0.25000000 0.14655172 0.10347682 0.2346319
#> 2 0.3818565 0.16025641 0.12820513 0.13008130 0.2382169
#> 3 0.1697966 0.21428571 0.24583333 0.15540016 0.2293046
#> 4 0.2393868 0.15476190 0.14665866 0.19340378 0.2066667
#> 5 0.2500000 0.25000000 0.05496922 0.08085612 0.1104183
#> 6 0.2619048 0.06862745 0.01739736 0.05701754 0.2588652
#>        T2-C-6    T2-C-7    T2-C-8 T2-C-7_BN T2-C-8_BN
#> 1 0.089953944 0.2057258 0.2837079 0.1569223 0.3247954
#> 2 0.103709127 0.2114830 0.2331540 0.1974646 0.2087871
#> 3 0.047180939 0.2519630 0.3000000 0.2314341 0.1643737
#> 4 0.301147228 0.3008681 0.3027884 0.1949171 0.2540587
#> 5 0.001539646 0.1829332 0.2220369 0.1870552 0.1070675
#> 6 0.083333333 0.1803109 0.2382713 0.1813302 0.2170433
#>      T8-C-1 T8-C-2    T8-C-3 T11-C-1 T11-C-2 T12-C-1
#> 1 0.0923913     NA 0.1410256      NA      NA      NA
#> 2 0.2026144     NA 0.1923077      NA      NA      NA
#> 3 0.2500000     NA 0.0600000      NA      NA      NA
#> 4 0.1666667     NA 0.1178862      NA      NA      NA
#> 5 0.1616162     NA 0.1933333      NA      NA      NA
#> 6 0.2516340     NA 0.2891156      NA      NA      NA
#>     T12-C-2 T13-C-1 T13-C-2 T13-C-3 T13-C-4    T13-C-5
#> 1 0.5449800      NA      NA      NA      NA 0.13888889
#> 2 0.3095506      NA      NA      NA      NA 0.13888889
#> 3 0.3425983      NA      NA      NA      NA 0.16666667
#> 4 0.3918308      NA      NA      NA      NA 0.21747967
#> 5 0.4647327      NA      NA      NA      NA 0.09482759
#> 6 0.5083175      NA      NA      NA      NA 0.18965517
#>      T13-C-6    T13-C-7    T13-C-8   T13-C-9 T13-C-10
#> 1 0.08849281 0.51706827 0.16666667 0.2987805       NA
#> 2 0.18140868 0.01683381 0.20114943 0.2385057       NA
#> 3 0.16211790 0.03132648 0.16666667 0.1944444       NA
#> 4 0.23989899 0.54421769 0.08130081 0.1760037       NA
#> 5 0.21226415 0.02777778 0.06504065 0.2919800       NA
#> 6 0.11049107 0.39393939 0.08130081 0.2146465       NA
#>   T13-C-11 T13-C-12 T13-C-13 T13-C-14 T13-C-15       T15
#> 1       NA       NA       NA       NA       NA 0.3645833
#> 2       NA       NA       NA       NA       NA 0.3339489
#> 3       NA       NA       NA       NA       NA 0.3210682
#> 4       NA       NA       NA       NA       NA 0.3649425
#> 5       NA       NA       NA       NA       NA 0.4716981
#> 6       NA       NA       NA       NA       NA 0.3946790
#>   T15-Bratli21   T16-C-1   T16-C-2   T16-C-3   T16-C-4
#> 1    0.2551183 0.2226776 0.2198670 0.2577736 0.3085355
#> 2    0.2872909 0.3341544 0.3596491 0.2608512 0.1820631
#> 3    0.2770032 0.2708333 0.2613169 0.3069184 0.2842679
#> 4    0.3413580 0.2552083 0.1635802 0.2956989 0.2115575
#> 5    0.3022203 0.2407407 0.2693429 0.2246497 0.1650106
#> 6    0.2649355 0.3182898 0.3535714 0.2408487 0.2112299
#>     T16-C-5   T16-C-6   T16-C-7   T18-C-1    T18-C-2
#> 1 0.6531548 0.5458443 0.3305085 0.6448475 0.40948276
#> 2 0.4814815 0.4051164 0.2500000 0.3070175 0.26190476
#> 3 0.3727735 0.3267196 0.2916667 0.4373479 0.23289183
#> 4 0.5041667 0.3931981 0.2083333 0.3030303 0.34612310
#> 5 0.4586247 0.3076377 0.3218391 0.5825617 0.51851852
#> 6 0.4064327 0.4531083 0.2166667 0.3549383 0.07929472
#>   T18-C-3 T18-C-4   T21-C-1   T21-C-2   T21-C-3   T21-C-4
#> 1      NA      NA 0.3663522 0.3309456 0.2259268 0.2647892
#> 2      NA      NA 0.5610200 0.4441581 0.2566483 0.3367434
#> 3      NA      NA 0.2731569 0.3973696 0.1865861 0.2837838
#> 4      NA      NA 0.3060429 0.3239783 0.2458751 0.3696404
#> 5      NA      NA 0.4566886 0.4012757 0.1777217 0.4740468
#> 6      NA      NA 0.2535817 0.3604806 0.3903275 0.2679592
#>       T21-7 T24-C-1_samlet T24-C-2_samlet T24-C-1_Moere
#> 1 0.1665567      0.5044695      0.1912136     0.5350369
#> 2 0.3191248      0.5767588      0.3276727     0.4834191
#> 3 0.1247113      0.6266280      0.3867521     0.5691266
#> 4 0.2437276      0.4711472      0.3026242     0.3687776
#> 5 0.2944641      0.5371597      0.2251286     0.4222182
#> 6 0.1722222      0.4268812      0.4085174     0.7216956
#>   T24-C-1_Troendelag T24-C-1_Troms T24-C-1_Finnmark
#> 1          0.5065958     0.3224095        0.3252841
#> 2          0.2782205     0.4330668        0.3094435
#> 3          0.6114393     0.4215686        0.3496066
#> 4          0.7293266     0.4587379        0.3119735
#> 5          0.6171679     0.2330508        0.2825630
#> 6          0.6029216     0.4210111        0.3598690
#>   T24-C-2_Moere T24-C-2_Troendelag T24-C-2_Troms
#> 1    0.54901961          0.4368867     0.1675386
#> 2    0.44444444          0.4541667     0.3560888
#> 3    0.21217105          0.3388889     0.3933333
#> 4    0.52314815          0.3593750     0.3803165
#> 5    0.22222222          0.2401961     0.1985816
#> 6    0.08496732          0.6305257     0.2599206
#>   T24-C-2_Finnmark   T29-C-1   T29-C-2   T29-C-3   T29-C-4
#> 1        0.2533113 0.4000000 0.2106061 0.1629790 0.3508230
#> 2        0.5125369 0.3782051 0.4335956 0.1383435 0.2924837
#> 3        0.3229491 0.5128205 0.1657688 0.1739201 0.2762557
#> 4        0.3774663 0.3484848 0.2364865 0.1962779 0.2156863
#> 5        0.4353499 0.5894309 0.2523840 0.1219386 0.3700565
#> 6        0.2934783 0.4429825 0.2853027 0.1561419 0.3246124
#>     T29-C-5   T29-C-6
#> 1 0.5268670 0.3347458
#> 2 0.4388802 0.3237705
#> 3 0.6453824 0.2886335
#> 4 0.4484266 0.5535714
#> 5 0.4876657 0.4451220
#> 6 0.4409456 0.5347222

This results in an R-list with a slot for every selected indicator, and in every slot there’s a data frame with as many columns as there are NiN species lists and as many rows as there were iterations in the bootstrap. Next, we need to derive scaling values from these bootstrap-lists (the columns) for every mapping unit in NiN. Here, we define things in the following way:

  • Median = reference values
  • 0.025 and 0.975 quantiles = lower and upper limit values
  • min and max of the respective indicator’s scale = min/max values
#>  [1] "T2-C-1"             "T2-C-2"            
#>  [3] "T2-C-3"             "T2-C-4"            
#>  [5] "T2-C-5"             "T2-C-6"            
#>  [7] "T2-C-7"             "T2-C-8"            
#>  [9] "T2-C-7_BN"          "T2-C-8_BN"         
#> [11] "T8-C-1"             "T8-C-2"            
#> [13] "T8-C-3"             "T11-C-1"           
#> [15] "T11-C-2"            "T12-C-1"           
#> [17] "T12-C-2"            "T13-C-1"           
#> [19] "T13-C-2"            "T13-C-3"           
#> [21] "T13-C-4"            "T13-C-5"           
#> [23] "T13-C-6"            "T13-C-7"           
#> [25] "T13-C-8"            "T13-C-9"           
#> [27] "T13-C-10"           "T13-C-11"          
#> [29] "T13-C-12"           "T13-C-13"          
#> [31] "T13-C-14"           "T13-C-15"          
#> [33] "T15"                "T15-Bratli21"      
#> [35] "T16-C-1"            "T16-C-2"           
#> [37] "T16-C-3"            "T16-C-4"           
#> [39] "T16-C-5"            "T16-C-6"           
#> [41] "T16-C-7"            "T18-C-1"           
#> [43] "T18-C-2"            "T18-C-3"           
#> [45] "T18-C-4"            "T21-C-1"           
#> [47] "T21-C-2"            "T21-C-3"           
#> [49] "T21-C-4"            "T21-7"             
#> [51] "T24-C-1_samlet"     "T24-C-2_samlet"    
#> [53] "T24-C-1_Moere"      "T24-C-1_Troendelag"
#> [55] "T24-C-1_Troms"      "T24-C-1_Finnmark"  
#> [57] "T24-C-2_Moere"      "T24-C-2_Troendelag"
#> [59] "T24-C-2_Troms"      "T24-C-2_Finnmark"  
#> [61] "T29-C-1"            "T29-C-2"           
#> [63] "T29-C-3"            "T29-C-4"           
#> [65] "T29-C-5"            "T29-C-6"
#>  [1] "T2-C-1"             "T2-C-2"            
#>  [3] "T2-C-3"             "T2-C-4"            
#>  [5] "T2-C-5"             "T2-C-6"            
#>  [7] "T2-C-7"             "T2-C-8"            
#>  [9] "T2-C-7_BN"          "T2-C-8_BN"         
#> [11] "T8-C-1"             "T8-C-2"            
#> [13] "T8-C-3"             "T11-C-1"           
#> [15] "T11-C-2"            "T12-C-1"           
#> [17] "T12-C-2"            "T13-C-1"           
#> [19] "T13-C-2"            "T13-C-3"           
#> [21] "T13-C-4"            "T13-C-5"           
#> [23] "T13-C-6"            "T13-C-7"           
#> [25] "T13-C-8"            "T13-C-9"           
#> [27] "T13-C-10"           "T13-C-11"          
#> [29] "T13-C-12"           "T13-C-13"          
#> [31] "T13-C-14"           "T13-C-15"          
#> [33] "T15"                "T15-Bratli21"      
#> [35] "T16-C-1"            "T16-C-2"           
#> [37] "T16-C-3"            "T16-C-4"           
#> [39] "T16-C-5"            "T16-C-6"           
#> [41] "T16-C-7"            "T18-C-1"           
#> [43] "T18-C-2"            "T18-C-3"           
#> [45] "T18-C-4"            "T21-C-1"           
#> [47] "T21-C-2"            "T21-C-3"           
#> [49] "T21-C-4"            "T21-7"             
#> [51] "T24-C-1_samlet"     "T24-C-2_samlet"    
#> [53] "T24-C-1_Moere"      "T24-C-1_Troendelag"
#> [55] "T24-C-1_Troms"      "T24-C-1_Finnmark"  
#> [57] "T24-C-2_Moere"      "T24-C-2_Troendelag"
#> [59] "T24-C-2_Troms"      "T24-C-2_Finnmark"  
#> [61] "T29-C-1"            "T29-C-2"           
#> [63] "T29-C-3"            "T29-C-4"           
#> [65] "T29-C-5"            "T29-C-6"
#>            V1         V2        V3          V4         V5
#> 1  0.08766832 0.21872555 0.3888889 0.496031746 0.67063492
#> 2  0.05382353 0.19671091 0.2843487 0.428523810 0.65859351
#> 3  0.03753882 0.17141992 0.3920588 0.329815301 0.56470638
#> 4  0.02523850 0.12230736 0.1929744 0.327729100 0.56582778
#> 5  0.10919903 0.20897488 0.3380892 0.360701100 0.52346972
#> 6  0.01706577 0.09912008 0.2559378 0.435242751 0.58410216
#> 7  0.15620537 0.25719120 0.3652055 0.441457929 0.55090793
#> 8  0.18061362 0.25018911 0.3382194 0.470574683 0.57752100
#> 9  0.10224655 0.20957553 0.3680637 0.462116259 0.57902923
#> 10 0.07427100 0.17847283 0.3162418 0.463891580 0.60815835
#> 11 0.09300746 0.21488110 0.3695652 0.155108025 0.33333333
#> 12         NA         NA        NA          NA         NA
#> 13 0.02525253 0.15415885 0.2878788 0.346414806 0.56818182
#> 14         NA         NA        NA          NA         NA
#> 15         NA         NA        NA          NA         NA
#> 16         NA         NA        NA          NA         NA
#> 17 0.29060240 0.40597466 0.5529830 0.155818787 0.25215467
#> 18         NA         NA        NA          NA         NA
#> 19         NA         NA        NA          NA         NA
#> 20         NA         NA        NA          NA         NA
#> 21         NA         NA        NA          NA         NA
#> 22 0.08130081 0.16666667 0.2682927 0.405053266 0.58333333
#> 23 0.04382799 0.18405797 0.3087121 0.346037866 0.50505301
#> 24 0.01230389 0.25000000 0.5833333 0.207409555 0.57507473
#> 25 0.08130081 0.18292683 0.3191057 0.416666667 0.61111111
#> 26 0.12457912 0.20114943 0.3516536 0.326849857 0.55962644
#> 27         NA         NA        NA          NA         NA
#> 28         NA         NA        NA          NA         NA
#> 29         NA         NA        NA          NA         NA
#> 30         NA         NA        NA          NA         NA
#> 31         NA         NA        NA          NA         NA
#> 32         NA         NA        NA          NA         NA
#> 33 0.24499059 0.36111111 0.5139583 0.233295494 0.40638940
#> 34 0.25060905 0.29379425 0.3820887 0.435684880 0.53193205
#> 35 0.16234299 0.25693620 0.3766281 0.279155891 0.47113943
#> 36 0.16357485 0.28641287 0.4200559 0.310350085 0.48381744
#> 37 0.14811000 0.23896199 0.3637605 0.378845415 0.49905906
#> 38 0.14713231 0.25527663 0.3812905 0.376717790 0.52809611
#> 39 0.27060801 0.41732082 0.6757135 0.164448153 0.34122203
#> 40 0.28533155 0.45307881 0.6803745 0.195725145 0.35596430
#> 41 0.09935897 0.30450974 0.5769421 0.222222223 0.43693694
#> 42 0.24251435 0.44391944 0.6280931 0.164932380 0.35012504
#> 43 0.16710152 0.34454332 0.5191094 0.034689455 0.14347518
#> 44         NA         NA        NA          NA         NA
#> 45         NA         NA        NA          NA         NA
#> 46 0.18793380 0.37662986 0.5758055 0.030067155 0.27795685
#> 47 0.30130530 0.39989343 0.4976052 0.345761792 0.44474045
#> 48 0.17262831 0.27771966 0.3958725 0.343577594 0.46802992
#> 49 0.19120164 0.34709012 0.5028986 0.125478216 0.36723930
#> 50 0.08967567 0.25972603 0.4213119 0.201083409 0.42210487
#> 51 0.30003882 0.48453591 0.6419169 0.024354072 0.11784811
#> 52 0.15736725 0.34885701 0.5663918 0.002446965 0.07598784
#> 53 0.27298739 0.48333123 0.6615657 0.024361766 0.12427942
#> 54 0.31163533 0.56287224 0.7379600 0.011030933 0.12438130
#> 55 0.21169666 0.39119214 0.5782941 0.016121596 0.16962269
#> 56 0.17771697 0.36777152 0.5187301 0.008425297 0.16703751
#> 57 0.12745098 0.43629763 0.6548144 0.000000000 0.07921569
#> 58 0.18848759 0.44182390 0.6936776 0.004898777 0.09975386
#> 59 0.18384737 0.32321389 0.4251799 0.001579779 0.08695652
#> 60 0.25007982 0.41887963 0.5943766 0.032845002 0.16601732
#> 61 0.18415773 0.37098021 0.5758081 0.092580409 0.23484848
#> 62 0.20707442 0.33291604 0.4557148 0.389448156 0.52754059
#> 63 0.09585174 0.16486025 0.2532998 0.407042639 0.55685255
#> 64 0.08778217 0.21052632 0.3721359 0.261498756 0.46883828
#> 65 0.31088700 0.46304153 0.6264738 0.029733603 0.13930852
#> 66 0.23213639 0.41569491 0.6266744 0.038280536 0.21708726
#>           V6          V7        V8        V9      V10
#> 1  0.7447321 0.005735723 0.1120774 0.2870716 2.834613
#> 2  0.7797668 0.000000000 0.1597796 0.4084967 3.330579
#> 3  0.7936851 0.025321138 0.2359968 0.5696107 3.156486
#> 4  0.7665337 0.120574240 0.3157958 0.5338759 4.606769
#> 5  0.6916941 0.110983810 0.2541142 0.4559565 4.453310
#> 6  0.7786876 0.105434160 0.2957560 0.5040567 4.712980
#> 7  0.6738322 0.091546770 0.1914806 0.2923935 4.862638
#> 8  0.6974140 0.063927305 0.1672794 0.2924579 4.984373
#> 9  0.7524761 0.079745942 0.1926481 0.3330141 4.701733
#> 10 0.7909958 0.086004879 0.1957826 0.3493089 4.956422
#> 11 0.5245331 0.270036376 0.4404762 0.6581973 4.415000
#> 12        NA          NA        NA        NA       NA
#> 13 0.8055556 0.134583333 0.2727273 0.4356260 4.816806
#> 14        NA          NA        NA        NA       NA
#> 15        NA          NA        NA        NA       NA
#> 16        NA          NA        NA        NA       NA
#> 17 0.3795203 0.219522914 0.3350895 0.4297591 5.162242
#> 18        NA          NA        NA        NA       NA
#> 19        NA          NA        NA        NA       NA
#> 20        NA          NA        NA        NA       NA
#> 21        NA          NA        NA        NA       NA
#> 22 0.8211382 0.055555556 0.2357724 0.3821839 2.804878
#> 23 0.6409212 0.185886752 0.3148770 0.4666543 4.294758
#> 24 0.9799197 0.005020080 0.1224490 0.3413906 3.036145
#> 25 0.8373984 0.032520325 0.1944444 0.3678862 3.333333
#> 26 0.7223420 0.126375456 0.2347561 0.3679465 4.242424
#> 27        NA          NA        NA        NA       NA
#> 28        NA          NA        NA        NA       NA
#> 29        NA          NA        NA        NA       NA
#> 30        NA          NA        NA        NA       NA
#> 31        NA          NA        NA        NA       NA
#> 32        NA          NA        NA        NA       NA
#> 33 0.5608236 0.126061321 0.2291667 0.3338492 3.420904
#> 34 0.5983096 0.132100093 0.1703649 0.2101719 3.762917
#> 35 0.6395535 0.109208892 0.2639093 0.4881055 4.279944
#> 36 0.6822968 0.088539009 0.2158678 0.3912413 4.477555
#> 37 0.6267098 0.135197412 0.2567565 0.3992098 4.193298
#> 38 0.6744551 0.105401613 0.2161034 0.3386715 4.286509
#> 39 0.5311081 0.077056285 0.2169817 0.3704522 4.227666
#> 40 0.5174475 0.066329446 0.1792464 0.3124922 4.050876
#> 41 0.6388889 0.070914473 0.2432432 0.4722917 4.564932
#> 42 0.5758203 0.065786151 0.2005232 0.3851419 4.617633
#> 43 0.2708425 0.333205756 0.5148968 0.6731078 4.511375
#> 44        NA          NA        NA        NA       NA
#> 45        NA          NA        NA        NA       NA
#> 46 0.5039078 0.041433288 0.3179337 0.7070889 4.781331
#> 47 0.5660524 0.070192195 0.1516556 0.2346538 5.788984
#> 48 0.6043919 0.141816620 0.2483754 0.3762084 4.872919
#> 49 0.5924905 0.099946196 0.2991857 0.4475722 5.043468
#> 50 0.7521036 0.124964235 0.3083632 0.4529543 5.105344
#> 51 0.2372093 0.229556384 0.3944126 0.6167403 4.945497
#> 52 0.2706975 0.313574049 0.5493960 0.8096174 4.529733
#> 53 0.2937690 0.154204634 0.3714276 0.6352384 4.763961
#> 54 0.2939938 0.134245220 0.2958759 0.5954819 4.706109
#> 55 0.3192162 0.281787839 0.4100370 0.7030475 4.519067
#> 56 0.3858288 0.166140141 0.4659604 0.7632445 4.719671
#> 57 0.3000000 0.250000000 0.4632166 0.8236928 4.250000
#> 58 0.2720318 0.225054113 0.4420727 0.7138526 4.521594
#> 59 0.2343690 0.396525204 0.5961376 0.7989570 5.478092
#> 60 0.3089442 0.216024611 0.4026184 0.6433525 4.601372
#> 61 0.4650319 0.176704546 0.3775510 0.5943713 3.939242
#> 62 0.6801921 0.045448503 0.1371601 0.2354948 4.082042
#> 63 0.7022056 0.164400765 0.2714242 0.3981789 5.478967
#> 64 0.6618873 0.192436558 0.3117091 0.4538495 5.557103
#> 65 0.2829305 0.251389541 0.3843212 0.5527090 4.919260
#> 66 0.4524256 0.203657407 0.3519559 0.5327743 5.309729
#>         V11      V12      V13      V14      V15      V16
#> 1  4.476190 5.389009 1.666667 2.600000 3.717514 2.054054
#> 2  4.880952 6.285714 1.235294 2.333333 3.470588 2.000000
#> 3  4.814227 6.011573 1.916576 3.275345 4.450445 2.110920
#> 4  5.737986 6.666667 1.818617 3.000000 4.319588 3.385196
#> 5  5.247586 6.009061 2.647226 3.556649 4.822016 2.976882
#> 6  5.721032 6.641097 2.463591 3.173645 4.187576 3.409615
#> 7  5.539673 6.282584 2.838162 3.369092 4.049901 2.972562
#> 8  5.680120 6.113998 2.727575 3.094241 3.496544 3.947285
#> 9  5.551775 6.342671 2.963358 3.348366 3.825764 2.758179
#> 10 5.741075 6.514043 2.998198 3.372142 3.815734 3.155511
#> 11 5.407785 6.333673 3.632551 4.842105 6.076923 2.682520
#> 12       NA       NA       NA       NA       NA       NA
#> 13 5.971691 6.769318 2.333333 4.000000 5.480121 2.499745
#> 14       NA       NA       NA       NA       NA       NA
#> 15       NA       NA       NA       NA       NA       NA
#> 16       NA       NA       NA       NA       NA       NA
#> 17 5.429241 5.705945 3.722993 4.576458 5.442697 2.486205
#> 18       NA       NA       NA       NA       NA       NA
#> 19       NA       NA       NA       NA       NA       NA
#> 20       NA       NA       NA       NA       NA       NA
#> 21       NA       NA       NA       NA       NA       NA
#> 22 4.844828 6.451293 3.000000 3.804878 5.634146 1.780488
#> 23 5.210157 6.570921 2.999832 3.925928 4.612375 2.744836
#> 24 4.258065 6.015283 1.845266 3.489796 6.000000 2.333163
#> 25 5.000000 6.568966 3.000000 3.706897 4.804878 2.568966
#> 26 5.197828 6.128086 2.422414 3.656566 4.677020 2.585859
#> 27       NA       NA       NA       NA       NA       NA
#> 28       NA       NA       NA       NA       NA       NA
#> 29       NA       NA       NA       NA       NA       NA
#> 30       NA       NA       NA       NA       NA       NA
#> 31       NA       NA       NA       NA       NA       NA
#> 32       NA       NA       NA       NA       NA       NA
#> 33 4.434783 5.000000 4.681067 5.597872 6.511206 1.671995
#> 34 4.104077 4.410747 4.693984 5.173043 5.651100 1.896863
#> 35 5.000000 5.654848 2.510243 3.773156 4.928668 2.380929
#> 36 5.101882 5.756967 2.522576 3.740369 4.880149 2.302267
#> 37 4.921653 5.716938 2.822584 3.761088 4.495396 2.808479
#> 38 4.960372 5.627944 2.657396 3.635066 4.433828 2.974881
#> 39 4.847752 5.361825 4.159384 5.327030 6.326673 2.184895
#> 40 4.726896 5.272624 4.027343 5.281717 6.555162 2.195281
#> 41 5.428571 6.428968 2.917080 4.125000 5.700357 2.222101
#> 42 5.160636 5.685656 3.354103 4.747317 5.881711 1.831488
#> 43 5.208685 6.091255 4.317818 5.290616 6.354692 3.237734
#> 44       NA       NA       NA       NA       NA       NA
#> 45       NA       NA       NA       NA       NA       NA
#> 46 6.316456 6.960317 3.580813 5.775142 8.484127 2.160844
#> 47 6.246117 6.731249 4.259699 4.912874 5.755123 2.975682
#> 48 5.464732 6.041276 3.111765 3.898314 4.765610 2.652346
#> 49 5.513848 5.978263 1.981775 3.889614 5.489779 2.203449
#> 50 5.727173 6.695663 2.530103 3.672057 4.754403 2.168740
#> 51 5.632478 6.356044 5.136618 6.428801 7.627357 2.701516
#> 52 5.579246 6.759379 4.574493 6.587573 8.351996 2.832766
#> 53 5.591324 6.445831 4.955440 6.442319 7.663058 2.390914
#> 54 5.573011 6.542760 4.623751 6.212592 7.290282 2.036044
#> 55 5.335195 6.419427 4.653704 6.111111 7.662631 2.273312
#> 56 5.787640 6.837309 4.465035 6.256079 8.057582 2.504946
#> 57 5.330579 6.851852 4.500000 6.076923 7.825870 2.148016
#> 58 5.389459 6.435125 4.493949 5.812383 7.548410 2.434490
#> 59 6.299593 6.953990 6.277632 7.632523 8.743697 5.038970
#> 60 5.439271 6.415611 4.695587 6.115232 7.736712 2.262829
#> 61 5.133333 6.067273 3.749671 5.060606 6.500000 2.710071
#> 62 4.997702 5.616845 3.677237 4.428342 5.141886 2.197448
#> 63 5.974999 6.456638 2.594755 3.178488 3.779111 3.306645
#> 64 6.140688 6.679142 2.866538 3.606447 4.550026 3.049985
#> 65 5.695322 6.442589 4.824208 6.132208 7.365500 2.874646
#> 66 6.073837 6.787213 3.594940 5.460067 7.587204 2.462940
#>         V17      V18                NiN
#> 1  3.475383 4.809472             T2-C-1
#> 2  3.846154 6.500000             T2-C-2
#> 3  3.677023 5.589687             T2-C-3
#> 4  5.333333 7.119332             T2-C-4
#> 5  4.272900 5.555851             T2-C-5
#> 6  5.145120 6.823120             T2-C-6
#> 7  4.031481 4.994144             T2-C-7
#> 8  5.060515 5.910220             T2-C-8
#> 9  4.107361 5.479319          T2-C-7_BN
#> 10 4.321785 5.578610          T2-C-8_BN
#> 11 4.428571 6.470861             T8-C-1
#> 12       NA       NA             T8-C-2
#> 13 3.900000 5.483190             T8-C-3
#> 14       NA       NA            T11-C-1
#> 15       NA       NA            T11-C-2
#> 16       NA       NA            T12-C-1
#> 17 3.259703 4.238748            T12-C-2
#> 18       NA       NA            T13-C-1
#> 19       NA       NA            T13-C-2
#> 20       NA       NA            T13-C-3
#> 21       NA       NA            T13-C-4
#> 22 3.195122 5.439024            T13-C-5
#> 23 4.501678 6.289810            T13-C-6
#> 24 4.000000 5.757576            T13-C-7
#> 25 3.431034 5.439024            T13-C-8
#> 26 4.068966 5.711590            T13-C-9
#> 27       NA       NA           T13-C-10
#> 28       NA       NA           T13-C-11
#> 29       NA       NA           T13-C-12
#> 30       NA       NA           T13-C-13
#> 31       NA       NA           T13-C-14
#> 32       NA       NA           T13-C-15
#> 33 2.340711 3.281270                T15
#> 34 2.177064 2.625147       T15-Bratli21
#> 35 3.402128 4.625284            T16-C-1
#> 36 3.253731 4.430699            T16-C-2
#> 37 3.773531 4.921042            T16-C-3
#> 38 3.978725 5.140815            T16-C-4
#> 39 3.079133 4.308136            T16-C-5
#> 40 2.894178 4.023432            T16-C-6
#> 41 3.900226 6.250000            T16-C-7
#> 42 2.498695 4.353716            T18-C-1
#> 43 5.170566 6.784790            T18-C-2
#> 44       NA       NA            T18-C-3
#> 45       NA       NA            T18-C-4
#> 46 4.508028 8.460971            T21-C-1
#> 47 3.722446 4.647642            T21-C-2
#> 48 3.340359 4.316478            T21-C-3
#> 49 3.351073 5.322171            T21-C-4
#> 50 3.117752 5.087087              T21-7
#> 51 4.729340 7.042814     T24-C-1_samlet
#> 52 6.345262 8.671942     T24-C-2_samlet
#> 53 4.506373 7.018260      T24-C-1_Moere
#> 54 3.605463 6.500132 T24-C-1_Troendelag
#> 55 4.543918 7.594822      T24-C-1_Troms
#> 56 5.626185 8.421311   T24-C-1_Finnmark
#> 57 5.857143 8.412131      T24-C-2_Moere
#> 58 5.298468 7.661147 T24-C-2_Troendelag
#> 59 7.116970 8.825881      T24-C-2_Troms
#> 60 4.447006 7.028946   T24-C-2_Finnmark
#> 61 4.635255 6.266731            T29-C-1
#> 62 2.940788 3.848218            T29-C-2
#> 63 4.396006 5.545852            T29-C-3
#> 64 4.403716 5.870871            T29-C-4
#> 65 4.542380 6.352717            T29-C-5
#> 66 4.569048 7.142719            T29-C-6
#> [1] 66 19
#>      V1   V2   V3   V4   V5   V6   V7   V8   V9  V10  V11
#> 1  0.09 0.22 0.39 0.50 0.67 0.74 0.01 0.11 0.29 2.83 4.48
#> 2  0.05 0.20 0.28 0.43 0.66 0.78 0.00 0.16 0.41 3.33 4.88
#> 3  0.04 0.17 0.39 0.33 0.56 0.79 0.03 0.24 0.57 3.16 4.81
#> 4  0.03 0.12 0.19 0.33 0.57 0.77 0.12 0.32 0.53 4.61 5.74
#> 5  0.11 0.21 0.34 0.36 0.52 0.69 0.11 0.25 0.46 4.45 5.25
#> 6  0.02 0.10 0.26 0.44 0.58 0.78 0.11 0.30 0.50 4.71 5.72
#> 7  0.16 0.26 0.37 0.44 0.55 0.67 0.09 0.19 0.29 4.86 5.54
#> 8  0.18 0.25 0.34 0.47 0.58 0.70 0.06 0.17 0.29 4.98 5.68
#> 9  0.10 0.21 0.37 0.46 0.58 0.75 0.08 0.19 0.33 4.70 5.55
#> 10 0.07 0.18 0.32 0.46 0.61 0.79 0.09 0.20 0.35 4.96 5.74
#> 11 0.09 0.21 0.37 0.16 0.33 0.52 0.27 0.44 0.66 4.42 5.41
#> 12   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 13 0.03 0.15 0.29 0.35 0.57 0.81 0.13 0.27 0.44 4.82 5.97
#> 14   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 15   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 16   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 17 0.29 0.41 0.55 0.16 0.25 0.38 0.22 0.34 0.43 5.16 5.43
#> 18   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 19   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 20   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 21   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 22 0.08 0.17 0.27 0.41 0.58 0.82 0.06 0.24 0.38 2.80 4.84
#> 23 0.04 0.18 0.31 0.35 0.51 0.64 0.19 0.31 0.47 4.29 5.21
#> 24 0.01 0.25 0.58 0.21 0.58 0.98 0.01 0.12 0.34 3.04 4.26
#> 25 0.08 0.18 0.32 0.42 0.61 0.84 0.03 0.19 0.37 3.33 5.00
#> 26 0.12 0.20 0.35 0.33 0.56 0.72 0.13 0.23 0.37 4.24 5.20
#> 27   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 28   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 29   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 30   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 31   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 32   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 33 0.24 0.36 0.51 0.23 0.41 0.56 0.13 0.23 0.33 3.42 4.43
#> 34 0.25 0.29 0.38 0.44 0.53 0.60 0.13 0.17 0.21 3.76 4.10
#> 35 0.16 0.26 0.38 0.28 0.47 0.64 0.11 0.26 0.49 4.28 5.00
#> 36 0.16 0.29 0.42 0.31 0.48 0.68 0.09 0.22 0.39 4.48 5.10
#> 37 0.15 0.24 0.36 0.38 0.50 0.63 0.14 0.26 0.40 4.19 4.92
#> 38 0.15 0.26 0.38 0.38 0.53 0.67 0.11 0.22 0.34 4.29 4.96
#> 39 0.27 0.42 0.68 0.16 0.34 0.53 0.08 0.22 0.37 4.23 4.85
#> 40 0.29 0.45 0.68 0.20 0.36 0.52 0.07 0.18 0.31 4.05 4.73
#> 41 0.10 0.30 0.58 0.22 0.44 0.64 0.07 0.24 0.47 4.56 5.43
#> 42 0.24 0.44 0.63 0.16 0.35 0.58 0.07 0.20 0.39 4.62 5.16
#> 43 0.17 0.34 0.52 0.03 0.14 0.27 0.33 0.51 0.67 4.51 5.21
#> 44   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 45   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
#> 46 0.19 0.38 0.58 0.03 0.28 0.50 0.04 0.32 0.71 4.78 6.32
#> 47 0.30 0.40 0.50 0.35 0.44 0.57 0.07 0.15 0.23 5.79 6.25
#> 48 0.17 0.28 0.40 0.34 0.47 0.60 0.14 0.25 0.38 4.87 5.46
#> 49 0.19 0.35 0.50 0.13 0.37 0.59 0.10 0.30 0.45 5.04 5.51
#> 50 0.09 0.26 0.42 0.20 0.42 0.75 0.12 0.31 0.45 5.11 5.73
#> 51 0.30 0.48 0.64 0.02 0.12 0.24 0.23 0.39 0.62 4.95 5.63
#> 52 0.16 0.35 0.57 0.00 0.08 0.27 0.31 0.55 0.81 4.53 5.58
#> 53 0.27 0.48 0.66 0.02 0.12 0.29 0.15 0.37 0.64 4.76 5.59
#> 54 0.31 0.56 0.74 0.01 0.12 0.29 0.13 0.30 0.60 4.71 5.57
#> 55 0.21 0.39 0.58 0.02 0.17 0.32 0.28 0.41 0.70 4.52 5.34
#> 56 0.18 0.37 0.52 0.01 0.17 0.39 0.17 0.47 0.76 4.72 5.79
#> 57 0.13 0.44 0.65 0.00 0.08 0.30 0.25 0.46 0.82 4.25 5.33
#> 58 0.19 0.44 0.69 0.00 0.10 0.27 0.23 0.44 0.71 4.52 5.39
#> 59 0.18 0.32 0.43 0.00 0.09 0.23 0.40 0.60 0.80 5.48 6.30
#> 60 0.25 0.42 0.59 0.03 0.17 0.31 0.22 0.40 0.64 4.60 5.44
#> 61 0.18 0.37 0.58 0.09 0.23 0.47 0.18 0.38 0.59 3.94 5.13
#> 62 0.21 0.33 0.46 0.39 0.53 0.68 0.05 0.14 0.24 4.08 5.00
#> 63 0.10 0.16 0.25 0.41 0.56 0.70 0.16 0.27 0.40 5.48 5.97
#> 64 0.09 0.21 0.37 0.26 0.47 0.66 0.19 0.31 0.45 5.56 6.14
#> 65 0.31 0.46 0.63 0.03 0.14 0.28 0.25 0.38 0.55 4.92 5.70
#> 66 0.23 0.42 0.63 0.04 0.22 0.45 0.20 0.35 0.53 5.31 6.07
#>     V12  V13  V14  V15  V16  V17  V18
#> 1  5.39 1.67 2.60 3.72 2.05 3.48 4.81
#> 2  6.29 1.24 2.33 3.47 2.00 3.85 6.50
#> 3  6.01 1.92 3.28 4.45 2.11 3.68 5.59
#> 4  6.67 1.82 3.00 4.32 3.39 5.33 7.12
#> 5  6.01 2.65 3.56 4.82 2.98 4.27 5.56
#> 6  6.64 2.46 3.17 4.19 3.41 5.15 6.82
#> 7  6.28 2.84 3.37 4.05 2.97 4.03 4.99
#> 8  6.11 2.73 3.09 3.50 3.95 5.06 5.91
#> 9  6.34 2.96 3.35 3.83 2.76 4.11 5.48
#> 10 6.51 3.00 3.37 3.82 3.16 4.32 5.58
#> 11 6.33 3.63 4.84 6.08 2.68 4.43 6.47
#> 12   NA   NA   NA   NA   NA   NA   NA
#> 13 6.77 2.33 4.00 5.48 2.50 3.90 5.48
#> 14   NA   NA   NA   NA   NA   NA   NA
#> 15   NA   NA   NA   NA   NA   NA   NA
#> 16   NA   NA   NA   NA   NA   NA   NA
#> 17 5.71 3.72 4.58 5.44 2.49 3.26 4.24
#> 18   NA   NA   NA   NA   NA   NA   NA
#> 19   NA   NA   NA   NA   NA   NA   NA
#> 20   NA   NA   NA   NA   NA   NA   NA
#> 21   NA   NA   NA   NA   NA   NA   NA
#> 22 6.45 3.00 3.80 5.63 1.78 3.20 5.44
#> 23 6.57 3.00 3.93 4.61 2.74 4.50 6.29
#> 24 6.02 1.85 3.49 6.00 2.33 4.00 5.76
#> 25 6.57 3.00 3.71 4.80 2.57 3.43 5.44
#> 26 6.13 2.42 3.66 4.68 2.59 4.07 5.71
#> 27   NA   NA   NA   NA   NA   NA   NA
#> 28   NA   NA   NA   NA   NA   NA   NA
#> 29   NA   NA   NA   NA   NA   NA   NA
#> 30   NA   NA   NA   NA   NA   NA   NA
#> 31   NA   NA   NA   NA   NA   NA   NA
#> 32   NA   NA   NA   NA   NA   NA   NA
#> 33 5.00 4.68 5.60 6.51 1.67 2.34 3.28
#> 34 4.41 4.69 5.17 5.65 1.90 2.18 2.63
#> 35 5.65 2.51 3.77 4.93 2.38 3.40 4.63
#> 36 5.76 2.52 3.74 4.88 2.30 3.25 4.43
#> 37 5.72 2.82 3.76 4.50 2.81 3.77 4.92
#> 38 5.63 2.66 3.64 4.43 2.97 3.98 5.14
#> 39 5.36 4.16 5.33 6.33 2.18 3.08 4.31
#> 40 5.27 4.03 5.28 6.56 2.20 2.89 4.02
#> 41 6.43 2.92 4.12 5.70 2.22 3.90 6.25
#> 42 5.69 3.35 4.75 5.88 1.83 2.50 4.35
#> 43 6.09 4.32 5.29 6.35 3.24 5.17 6.78
#> 44   NA   NA   NA   NA   NA   NA   NA
#> 45   NA   NA   NA   NA   NA   NA   NA
#> 46 6.96 3.58 5.78 8.48 2.16 4.51 8.46
#> 47 6.73 4.26 4.91 5.76 2.98 3.72 4.65
#> 48 6.04 3.11 3.90 4.77 2.65 3.34 4.32
#> 49 5.98 1.98 3.89 5.49 2.20 3.35 5.32
#> 50 6.70 2.53 3.67 4.75 2.17 3.12 5.09
#> 51 6.36 5.14 6.43 7.63 2.70 4.73 7.04
#> 52 6.76 4.57 6.59 8.35 2.83 6.35 8.67
#> 53 6.45 4.96 6.44 7.66 2.39 4.51 7.02
#> 54 6.54 4.62 6.21 7.29 2.04 3.61 6.50
#> 55 6.42 4.65 6.11 7.66 2.27 4.54 7.59
#> 56 6.84 4.47 6.26 8.06 2.50 5.63 8.42
#> 57 6.85 4.50 6.08 7.83 2.15 5.86 8.41
#> 58 6.44 4.49 5.81 7.55 2.43 5.30 7.66
#> 59 6.95 6.28 7.63 8.74 5.04 7.12 8.83
#> 60 6.42 4.70 6.12 7.74 2.26 4.45 7.03
#> 61 6.07 3.75 5.06 6.50 2.71 4.64 6.27
#> 62 5.62 3.68 4.43 5.14 2.20 2.94 3.85
#> 63 6.46 2.59 3.18 3.78 3.31 4.40 5.55
#> 64 6.68 2.87 3.61 4.55 3.05 4.40 5.87
#> 65 6.44 4.82 6.13 7.37 2.87 4.54 6.35
#> 66 6.79 3.59 5.46 7.59 2.46 4.57 7.14
#>     CC_q2.5            CC_q50           CC_q97.5     
#>  Min.   :0.01230   Min.   :0.09912   Min.   :0.1930  
#>  1st Qu.:0.09051   1st Qu.:0.20981   1st Qu.:0.3641  
#>  Median :0.16296   Median :0.29010   Median :0.4232  
#>  Mean   :0.16039   Mean   :0.30412   Mean   :0.4635  
#>  3rd Qu.:0.22703   3rd Qu.:0.39772   3rd Qu.:0.5780  
#>  Max.   :0.31163   Max.   :0.56287   Max.   :0.7380  
#>  NA's   :16        NA's   :16        NA's   :16      
#>     SS_q2.5            SS_q50           SS_q97.5     
#>  Min.   :0.00000   Min.   :0.07599   Min.   :0.2344  
#>  1st Qu.:0.03559   1st Qu.:0.22153   1st Qu.:0.4025  
#>  Median :0.24740   Median :0.45638   Median :0.6156  
#>  Mean   :0.23524   Mean   :0.39509   Mean   :0.5735  
#>  3rd Qu.:0.37831   3rd Qu.:0.55893   3rd Qu.:0.7173  
#>  Max.   :0.49603   Max.   :0.67063   Max.   :0.9799  
#>  NA's   :16        NA's   :16        NA's   :16      
#>     RR_q2.5            RR_q50          RR_q97.5     
#>  Min.   :0.00000   Min.   :0.1121   Min.   :0.2102  
#>  1st Qu.:0.07245   1st Qu.:0.2044   1st Qu.:0.3679  
#>  Median :0.12551   Median :0.2677   Median :0.4503  
#>  Mean   :0.13816   Mean   :0.2906   Mean   :0.4788  
#>  3rd Qu.:0.19080   3rd Qu.:0.3666   3rd Qu.:0.5952  
#>  Max.   :0.39653   Max.   :0.5961   Max.   :0.8237  
#>  NA's   :16        NA's   :16       NA's   :16      
#>    Light_q2.5      Light_q50      Light_q97.5   
#>  Min.   :2.805   Min.   :4.104   Min.   :4.411  
#>  1st Qu.:4.231   1st Qu.:5.000   1st Qu.:5.986  
#>  Median :4.547   Median :5.418   Median :6.349  
#>  Mean   :4.460   Mean   :5.357   Mean   :6.206  
#>  3rd Qu.:4.870   3rd Qu.:5.692   3rd Qu.:6.570  
#>  Max.   :5.789   Max.   :6.316   Max.   :6.960  
#>  NA's   :16      NA's   :16      NA's   :16     
#>  Nitrogen_q2.5    Nitrogen_q50   Nitrogen_q97.5 
#>  Min.   :1.235   Min.   :2.333   Min.   :3.471  
#>  1st Qu.:2.608   1st Qu.:3.614   1st Qu.:4.566  
#>  Median :3.056   Median :4.062   Median :5.562  
#>  Mean   :3.401   Mean   :4.545   Mean   :5.746  
#>  3rd Qu.:4.428   3rd Qu.:5.563   3rd Qu.:7.107  
#>  Max.   :6.278   Max.   :7.633   Max.   :8.744  
#>  NA's   :16      NA's   :16      NA's   :16     
#>  Soil_disturbance_q2.5 Soil_disturbance_q50
#>  Min.   :1.672         Min.   :2.177       
#>  1st Qu.:2.196         1st Qu.:3.409       
#>  Median :2.493         Median :4.050       
#>  Mean   :2.591         Mean   :4.123       
#>  3rd Qu.:2.864         3rd Qu.:4.544       
#>  Max.   :5.039         Max.   :7.117       
#>  NA's   :16            NA's   :16          
#>  Soil_disturbance_q97.5     NiN           
#>  Min.   :2.625          Length:66         
#>  1st Qu.:4.939          Class :character  
#>  Median :5.651          Mode  :character  
#>  Mean   :5.879                            
#>  3rd Qu.:6.814                            
#>  Max.   :8.826                            
#>  NA's   :16
#>  [1] "T2-C-1"             "T2-C-2"            
#>  [3] "T2-C-3"             "T2-C-4"            
#>  [5] "T2-C-5"             "T2-C-6"            
#>  [7] "T2-C-7"             "T2-C-8"            
#>  [9] "T2-C-7_BN"          "T2-C-8_BN"         
#> [11] "T8-C-1"             "T8-C-2"            
#> [13] "T8-C-3"             "T11-C-1"           
#> [15] "T11-C-2"            "T12-C-1"           
#> [17] "T12-C-2"            "T13-C-1"           
#> [19] "T13-C-2"            "T13-C-3"           
#> [21] "T13-C-4"            "T13-C-5"           
#> [23] "T13-C-6"            "T13-C-7"           
#> [25] "T13-C-8"            "T13-C-9"           
#> [27] "T13-C-10"           "T13-C-11"          
#> [29] "T13-C-12"           "T13-C-13"          
#> [31] "T13-C-14"           "T13-C-15"          
#> [33] "T15"                "T15-Bratli21"      
#> [35] "T16-C-1"            "T16-C-2"           
#> [37] "T16-C-3"            "T16-C-4"           
#> [39] "T16-C-5"            "T16-C-6"           
#> [41] "T16-C-7"            "T18-C-1"           
#> [43] "T18-C-2"            "T18-C-3"           
#> [45] "T18-C-4"            "T21-C-1"           
#> [47] "T21-C-2"            "T21-C-3"           
#> [49] "T21-C-4"            "T21-7"             
#> [51] "T24-C-1_samlet"     "T24-C-2_samlet"    
#> [53] "T24-C-1_Moere"      "T24-C-1_Troendelag"
#> [55] "T24-C-1_Troms"      "T24-C-1_Finnmark"  
#> [57] "T24-C-2_Moere"      "T24-C-2_Troendelag"
#> [59] "T24-C-2_Troms"      "T24-C-2_Finnmark"  
#> [61] "T29-C-1"            "T29-C-2"           
#> [63] "T29-C-3"            "T29-C-4"           
#> [65] "T29-C-5"            "T29-C-6"
#>       CC_q2.5     CC_q50  CC_q97.5     SS_q2.5     SS_q50
#> 1  0.08766832 0.21872555 0.3888889 0.496031746 0.67063492
#> 2  0.05382353 0.19671091 0.2843487 0.428523810 0.65859351
#> 3  0.03753882 0.17141992 0.3920588 0.329815301 0.56470638
#> 4  0.02523850 0.12230736 0.1929744 0.327729100 0.56582778
#> 5  0.10919903 0.20897488 0.3380892 0.360701100 0.52346972
#> 6  0.01706577 0.09912008 0.2559378 0.435242751 0.58410216
#> 7  0.15620537 0.25719120 0.3652055 0.441457929 0.55090793
#> 8  0.18061362 0.25018911 0.3382194 0.470574683 0.57752100
#> 9  0.10224655 0.20957553 0.3680637 0.462116259 0.57902923
#> 10 0.07427100 0.17847283 0.3162418 0.463891580 0.60815835
#> 11 0.09300746 0.21488110 0.3695652 0.155108025 0.33333333
#> 12         NA         NA        NA          NA         NA
#> 13 0.02525253 0.15415885 0.2878788 0.346414806 0.56818182
#> 14         NA         NA        NA          NA         NA
#> 15         NA         NA        NA          NA         NA
#> 16         NA         NA        NA          NA         NA
#> 17 0.29060240 0.40597466 0.5529830 0.155818787 0.25215467
#> 18         NA         NA        NA          NA         NA
#> 19         NA         NA        NA          NA         NA
#> 20         NA         NA        NA          NA         NA
#> 21         NA         NA        NA          NA         NA
#> 22 0.08130081 0.16666667 0.2682927 0.405053266 0.58333333
#> 23 0.04382799 0.18405797 0.3087121 0.346037866 0.50505301
#> 24 0.01230389 0.25000000 0.5833333 0.207409555 0.57507473
#> 25 0.08130081 0.18292683 0.3191057 0.416666667 0.61111111
#> 26 0.12457912 0.20114943 0.3516536 0.326849857 0.55962644
#> 27         NA         NA        NA          NA         NA
#> 28         NA         NA        NA          NA         NA
#> 29         NA         NA        NA          NA         NA
#> 30         NA         NA        NA          NA         NA
#> 31         NA         NA        NA          NA         NA
#> 32         NA         NA        NA          NA         NA
#> 33 0.24499059 0.36111111 0.5139583 0.233295494 0.40638940
#> 34 0.25060905 0.29379425 0.3820887 0.435684880 0.53193205
#> 35 0.16234299 0.25693620 0.3766281 0.279155891 0.47113943
#> 36 0.16357485 0.28641287 0.4200559 0.310350085 0.48381744
#> 37 0.14811000 0.23896199 0.3637605 0.378845415 0.49905906
#> 38 0.14713231 0.25527663 0.3812905 0.376717790 0.52809611
#> 39 0.27060801 0.41732082 0.6757135 0.164448153 0.34122203
#> 40 0.28533155 0.45307881 0.6803745 0.195725145 0.35596430
#> 41 0.09935897 0.30450974 0.5769421 0.222222223 0.43693694
#> 42 0.24251435 0.44391944 0.6280931 0.164932380 0.35012504
#> 43 0.16710152 0.34454332 0.5191094 0.034689455 0.14347518
#> 44         NA         NA        NA          NA         NA
#> 45         NA         NA        NA          NA         NA
#> 46 0.18793380 0.37662986 0.5758055 0.030067155 0.27795685
#> 47 0.30130530 0.39989343 0.4976052 0.345761792 0.44474045
#> 48 0.17262831 0.27771966 0.3958725 0.343577594 0.46802992
#> 49 0.19120164 0.34709012 0.5028986 0.125478216 0.36723930
#> 50 0.08967567 0.25972603 0.4213119 0.201083409 0.42210487
#> 51 0.30003882 0.48453591 0.6419169 0.024354072 0.11784811
#> 52 0.15736725 0.34885701 0.5663918 0.002446965 0.07598784
#> 53 0.27298739 0.48333123 0.6615657 0.024361766 0.12427942
#> 54 0.31163533 0.56287224 0.7379600 0.011030933 0.12438130
#> 55 0.21169666 0.39119214 0.5782941 0.016121596 0.16962269
#> 56 0.17771697 0.36777152 0.5187301 0.008425297 0.16703751
#> 57 0.12745098 0.43629763 0.6548144 0.000000000 0.07921569
#> 58 0.18848759 0.44182390 0.6936776 0.004898777 0.09975386
#> 59 0.18384737 0.32321389 0.4251799 0.001579779 0.08695652
#> 60 0.25007982 0.41887963 0.5943766 0.032845002 0.16601732
#> 61 0.18415773 0.37098021 0.5758081 0.092580409 0.23484848
#> 62 0.20707442 0.33291604 0.4557148 0.389448156 0.52754059
#> 63 0.09585174 0.16486025 0.2532998 0.407042639 0.55685255
#> 64 0.08778217 0.21052632 0.3721359 0.261498756 0.46883828
#> 65 0.31088700 0.46304153 0.6264738 0.029733603 0.13930852
#> 66 0.23213639 0.41569491 0.6266744 0.038280536 0.21708726
#>     SS_q97.5     RR_q2.5    RR_q50  RR_q97.5 Light_q2.5
#> 1  0.7447321 0.005735723 0.1120774 0.2870716   2.834613
#> 2  0.7797668 0.000000000 0.1597796 0.4084967   3.330579
#> 3  0.7936851 0.025321138 0.2359968 0.5696107   3.156486
#> 4  0.7665337 0.120574240 0.3157958 0.5338759   4.606769
#> 5  0.6916941 0.110983810 0.2541142 0.4559565   4.453310
#> 6  0.7786876 0.105434160 0.2957560 0.5040567   4.712980
#> 7  0.6738322 0.091546770 0.1914806 0.2923935   4.862638
#> 8  0.6974140 0.063927305 0.1672794 0.2924579   4.984373
#> 9  0.7524761 0.079745942 0.1926481 0.3330141   4.701733
#> 10 0.7909958 0.086004879 0.1957826 0.3493089   4.956422
#> 11 0.5245331 0.270036376 0.4404762 0.6581973   4.415000
#> 12        NA          NA        NA        NA         NA
#> 13 0.8055556 0.134583333 0.2727273 0.4356260   4.816806
#> 14        NA          NA        NA        NA         NA
#> 15        NA          NA        NA        NA         NA
#> 16        NA          NA        NA        NA         NA
#> 17 0.3795203 0.219522914 0.3350895 0.4297591   5.162242
#> 18        NA          NA        NA        NA         NA
#> 19        NA          NA        NA        NA         NA
#> 20        NA          NA        NA        NA         NA
#> 21        NA          NA        NA        NA         NA
#> 22 0.8211382 0.055555556 0.2357724 0.3821839   2.804878
#> 23 0.6409212 0.185886752 0.3148770 0.4666543   4.294758
#> 24 0.9799197 0.005020080 0.1224490 0.3413906   3.036145
#> 25 0.8373984 0.032520325 0.1944444 0.3678862   3.333333
#> 26 0.7223420 0.126375456 0.2347561 0.3679465   4.242424
#> 27        NA          NA        NA        NA         NA
#> 28        NA          NA        NA        NA         NA
#> 29        NA          NA        NA        NA         NA
#> 30        NA          NA        NA        NA         NA
#> 31        NA          NA        NA        NA         NA
#> 32        NA          NA        NA        NA         NA
#> 33 0.5608236 0.126061321 0.2291667 0.3338492   3.420904
#> 34 0.5983096 0.132100093 0.1703649 0.2101719   3.762917
#> 35 0.6395535 0.109208892 0.2639093 0.4881055   4.279944
#> 36 0.6822968 0.088539009 0.2158678 0.3912413   4.477555
#> 37 0.6267098 0.135197412 0.2567565 0.3992098   4.193298
#> 38 0.6744551 0.105401613 0.2161034 0.3386715   4.286509
#> 39 0.5311081 0.077056285 0.2169817 0.3704522   4.227666
#> 40 0.5174475 0.066329446 0.1792464 0.3124922   4.050876
#> 41 0.6388889 0.070914473 0.2432432 0.4722917   4.564932
#> 42 0.5758203 0.065786151 0.2005232 0.3851419   4.617633
#> 43 0.2708425 0.333205756 0.5148968 0.6731078   4.511375
#> 44        NA          NA        NA        NA         NA
#> 45        NA          NA        NA        NA         NA
#> 46 0.5039078 0.041433288 0.3179337 0.7070889   4.781331
#> 47 0.5660524 0.070192195 0.1516556 0.2346538   5.788984
#> 48 0.6043919 0.141816620 0.2483754 0.3762084   4.872919
#> 49 0.5924905 0.099946196 0.2991857 0.4475722   5.043468
#> 50 0.7521036 0.124964235 0.3083632 0.4529543   5.105344
#> 51 0.2372093 0.229556384 0.3944126 0.6167403   4.945497
#> 52 0.2706975 0.313574049 0.5493960 0.8096174   4.529733
#> 53 0.2937690 0.154204634 0.3714276 0.6352384   4.763961
#> 54 0.2939938 0.134245220 0.2958759 0.5954819   4.706109
#> 55 0.3192162 0.281787839 0.4100370 0.7030475   4.519067
#> 56 0.3858288 0.166140141 0.4659604 0.7632445   4.719671
#> 57 0.3000000 0.250000000 0.4632166 0.8236928   4.250000
#> 58 0.2720318 0.225054113 0.4420727 0.7138526   4.521594
#> 59 0.2343690 0.396525204 0.5961376 0.7989570   5.478092
#> 60 0.3089442 0.216024611 0.4026184 0.6433525   4.601372
#> 61 0.4650319 0.176704546 0.3775510 0.5943713   3.939242
#> 62 0.6801921 0.045448503 0.1371601 0.2354948   4.082042
#> 63 0.7022056 0.164400765 0.2714242 0.3981789   5.478967
#> 64 0.6618873 0.192436558 0.3117091 0.4538495   5.557103
#> 65 0.2829305 0.251389541 0.3843212 0.5527090   4.919260
#> 66 0.4524256 0.203657407 0.3519559 0.5327743   5.309729
#>    Light_q50 Light_q97.5 Nitrogen_q2.5 Nitrogen_q50
#> 1   4.476190    5.389009      1.666667     2.600000
#> 2   4.880952    6.285714      1.235294     2.333333
#> 3   4.814227    6.011573      1.916576     3.275345
#> 4   5.737986    6.666667      1.818617     3.000000
#> 5   5.247586    6.009061      2.647226     3.556649
#> 6   5.721032    6.641097      2.463591     3.173645
#> 7   5.539673    6.282584      2.838162     3.369092
#> 8   5.680120    6.113998      2.727575     3.094241
#> 9   5.551775    6.342671      2.963358     3.348366
#> 10  5.741075    6.514043      2.998198     3.372142
#> 11  5.407785    6.333673      3.632551     4.842105
#> 12        NA          NA            NA           NA
#> 13  5.971691    6.769318      2.333333     4.000000
#> 14        NA          NA            NA           NA
#> 15        NA          NA            NA           NA
#> 16        NA          NA            NA           NA
#> 17  5.429241    5.705945      3.722993     4.576458
#> 18        NA          NA            NA           NA
#> 19        NA          NA            NA           NA
#> 20        NA          NA            NA           NA
#> 21        NA          NA            NA           NA
#> 22  4.844828    6.451293      3.000000     3.804878
#> 23  5.210157    6.570921      2.999832     3.925928
#> 24  4.258065    6.015283      1.845266     3.489796
#> 25  5.000000    6.568966      3.000000     3.706897
#> 26  5.197828    6.128086      2.422414     3.656566
#> 27        NA          NA            NA           NA
#> 28        NA          NA            NA           NA
#> 29        NA          NA            NA           NA
#> 30        NA          NA            NA           NA
#> 31        NA          NA            NA           NA
#> 32        NA          NA            NA           NA
#> 33  4.434783    5.000000      4.681067     5.597872
#> 34  4.104077    4.410747      4.693984     5.173043
#> 35  5.000000    5.654848      2.510243     3.773156
#> 36  5.101882    5.756967      2.522576     3.740369
#> 37  4.921653    5.716938      2.822584     3.761088
#> 38  4.960372    5.627944      2.657396     3.635066
#> 39  4.847752    5.361825      4.159384     5.327030
#> 40  4.726896    5.272624      4.027343     5.281717
#> 41  5.428571    6.428968      2.917080     4.125000
#> 42  5.160636    5.685656      3.354103     4.747317
#> 43  5.208685    6.091255      4.317818     5.290616
#> 44        NA          NA            NA           NA
#> 45        NA          NA            NA           NA
#> 46  6.316456    6.960317      3.580813     5.775142
#> 47  6.246117    6.731249      4.259699     4.912874
#> 48  5.464732    6.041276      3.111765     3.898314
#> 49  5.513848    5.978263      1.981775     3.889614
#> 50  5.727173    6.695663      2.530103     3.672057
#> 51  5.632478    6.356044      5.136618     6.428801
#> 52  5.579246    6.759379      4.574493     6.587573
#> 53  5.591324    6.445831      4.955440     6.442319
#> 54  5.573011    6.542760      4.623751     6.212592
#> 55  5.335195    6.419427      4.653704     6.111111
#> 56  5.787640    6.837309      4.465035     6.256079
#> 57  5.330579    6.851852      4.500000     6.076923
#> 58  5.389459    6.435125      4.493949     5.812383
#> 59  6.299593    6.953990      6.277632     7.632523
#> 60  5.439271    6.415611      4.695587     6.115232
#> 61  5.133333    6.067273      3.749671     5.060606
#> 62  4.997702    5.616845      3.677237     4.428342
#> 63  5.974999    6.456638      2.594755     3.178488
#> 64  6.140688    6.679142      2.866538     3.606447
#> 65  5.695322    6.442589      4.824208     6.132208
#> 66  6.073837    6.787213      3.594940     5.460067
#>    Nitrogen_q97.5 Soil_disturbance_q2.5
#> 1        3.717514              2.054054
#> 2        3.470588              2.000000
#> 3        4.450445              2.110920
#> 4        4.319588              3.385196
#> 5        4.822016              2.976882
#> 6        4.187576              3.409615
#> 7        4.049901              2.972562
#> 8        3.496544              3.947285
#> 9        3.825764              2.758179
#> 10       3.815734              3.155511
#> 11       6.076923              2.682520
#> 12             NA                    NA
#> 13       5.480121              2.499745
#> 14             NA                    NA
#> 15             NA                    NA
#> 16             NA                    NA
#> 17       5.442697              2.486205
#> 18             NA                    NA
#> 19             NA                    NA
#> 20             NA                    NA
#> 21             NA                    NA
#> 22       5.634146              1.780488
#> 23       4.612375              2.744836
#> 24       6.000000              2.333163
#> 25       4.804878              2.568966
#> 26       4.677020              2.585859
#> 27             NA                    NA
#> 28             NA                    NA
#> 29             NA                    NA
#> 30             NA                    NA
#> 31             NA                    NA
#> 32             NA                    NA
#> 33       6.511206              1.671995
#> 34       5.651100              1.896863
#> 35       4.928668              2.380929
#> 36       4.880149              2.302267
#> 37       4.495396              2.808479
#> 38       4.433828              2.974881
#> 39       6.326673              2.184895
#> 40       6.555162              2.195281
#> 41       5.700357              2.222101
#> 42       5.881711              1.831488
#> 43       6.354692              3.237734
#> 44             NA                    NA
#> 45             NA                    NA
#> 46       8.484127              2.160844
#> 47       5.755123              2.975682
#> 48       4.765610              2.652346
#> 49       5.489779              2.203449
#> 50       4.754403              2.168740
#> 51       7.627357              2.701516
#> 52       8.351996              2.832766
#> 53       7.663058              2.390914
#> 54       7.290282              2.036044
#> 55       7.662631              2.273312
#> 56       8.057582              2.504946
#> 57       7.825870              2.148016
#> 58       7.548410              2.434490
#> 59       8.743697              5.038970
#> 60       7.736712              2.262829
#> 61       6.500000              2.710071
#> 62       5.141886              2.197448
#> 63       3.779111              3.306645
#> 64       4.550026              3.049985
#> 65       7.365500              2.874646
#> 66       7.587204              2.462940
#>    Soil_disturbance_q50 Soil_disturbance_q97.5
#> 1              3.475383               4.809472
#> 2              3.846154               6.500000
#> 3              3.677023               5.589687
#> 4              5.333333               7.119332
#> 5              4.272900               5.555851
#> 6              5.145120               6.823120
#> 7              4.031481               4.994144
#> 8              5.060515               5.910220
#> 9              4.107361               5.479319
#> 10             4.321785               5.578610
#> 11             4.428571               6.470861
#> 12                   NA                     NA
#> 13             3.900000               5.483190
#> 14                   NA                     NA
#> 15                   NA                     NA
#> 16                   NA                     NA
#> 17             3.259703               4.238748
#> 18                   NA                     NA
#> 19                   NA                     NA
#> 20                   NA                     NA
#> 21                   NA                     NA
#> 22             3.195122               5.439024
#> 23             4.501678               6.289810
#> 24             4.000000               5.757576
#> 25             3.431034               5.439024
#> 26             4.068966               5.711590
#> 27                   NA                     NA
#> 28                   NA                     NA
#> 29                   NA                     NA
#> 30                   NA                     NA
#> 31                   NA                     NA
#> 32                   NA                     NA
#> 33             2.340711               3.281270
#> 34             2.177064               2.625147
#> 35             3.402128               4.625284
#> 36             3.253731               4.430699
#> 37             3.773531               4.921042
#> 38             3.978725               5.140815
#> 39             3.079133               4.308136
#> 40             2.894178               4.023432
#> 41             3.900226               6.250000
#> 42             2.498695               4.353716
#> 43             5.170566               6.784790
#> 44                   NA                     NA
#> 45                   NA                     NA
#> 46             4.508028               8.460971
#> 47             3.722446               4.647642
#> 48             3.340359               4.316478
#> 49             3.351073               5.322171
#> 50             3.117752               5.087087
#> 51             4.729340               7.042814
#> 52             6.345262               8.671942
#> 53             4.506373               7.018260
#> 54             3.605463               6.500132
#> 55             4.543918               7.594822
#> 56             5.626185               8.421311
#> 57             5.857143               8.412131
#> 58             5.298468               7.661147
#> 59             7.116970               8.825881
#> 60             4.447006               7.028946
#> 61             4.635255               6.266731
#> 62             2.940788               3.848218
#> 63             4.396006               5.545852
#> 64             4.403716               5.870871
#> 65             4.542380               6.352717
#> 66             4.569048               7.142719
#>                   NiN
#> 1              T2-C-1
#> 2              T2-C-2
#> 3              T2-C-3
#> 4              T2-C-4
#> 5              T2-C-5
#> 6              T2-C-6
#> 7              T2-C-7
#> 8              T2-C-8
#> 9           T2-C-7_BN
#> 10          T2-C-8_BN
#> 11             T8-C-1
#> 12             T8-C-2
#> 13             T8-C-3
#> 14            T11-C-1
#> 15            T11-C-2
#> 16            T12-C-1
#> 17            T12-C-2
#> 18            T13-C-1
#> 19            T13-C-2
#> 20            T13-C-3
#> 21            T13-C-4
#> 22            T13-C-5
#> 23            T13-C-6
#> 24            T13-C-7
#> 25            T13-C-8
#> 26            T13-C-9
#> 27           T13-C-10
#> 28           T13-C-11
#> 29           T13-C-12
#> 30           T13-C-13
#> 31           T13-C-14
#> 32           T13-C-15
#> 33                T15
#> 34       T15-Bratli21
#> 35            T16-C-1
#> 36            T16-C-2
#> 37            T16-C-3
#> 38            T16-C-4
#> 39            T16-C-5
#> 40            T16-C-6
#> 41            T16-C-7
#> 42            T18-C-1
#> 43            T18-C-2
#> 44            T18-C-3
#> 45            T18-C-4
#> 46            T21-C-1
#> 47            T21-C-2
#> 48            T21-C-3
#> 49            T21-C-4
#> 50              T21-7
#> 51     T24-C-1_samlet
#> 52     T24-C-2_samlet
#> 53      T24-C-1_Moere
#> 54 T24-C-1_Troendelag
#> 55      T24-C-1_Troms
#> 56   T24-C-1_Finnmark
#> 57      T24-C-2_Moere
#> 58 T24-C-2_Troendelag
#> 59      T24-C-2_Troms
#> 60   T24-C-2_Finnmark
#> 61            T29-C-1
#> 62            T29-C-2
#> 63            T29-C-3
#> 64            T29-C-4
#> 65            T29-C-5
#> 66            T29-C-6
#>          N1 hoved              grunn county region
#> 1   natopen    NA             T2-C-1    all    all
#> 2   natopen    NA             T2-C-1    all    all
#> 3   natopen    NA             T2-C-2    all    all
#> 4   natopen    NA             T2-C-2    all    all
#> 5   natopen    NA             T2-C-3    all    all
#> 6   natopen    NA             T2-C-3    all    all
#> 7   natopen    NA             T2-C-4    all    all
#> 8   natopen    NA             T2-C-4    all    all
#> 9   natopen    NA             T2-C-5    all    all
#> 10  natopen    NA             T2-C-5    all    all
#> 11  natopen    NA             T2-C-6    all    all
#> 12  natopen    NA             T2-C-6    all    all
#> 13  natopen    NA             T2-C-7    all    all
#> 14  natopen    NA             T2-C-7    all    all
#> 15  natopen    NA             T2-C-8    all    all
#> 16  natopen    NA             T2-C-8    all    all
#> 17  natopen    NA          T2-C-7_BN    all    all
#> 18  natopen    NA          T2-C-7_BN    all    all
#> 19  natopen    NA          T2-C-8_BN    all    all
#> 20  natopen    NA          T2-C-8_BN    all    all
#> 21  natopen    NA             T8-C-1    all    all
#> 22  natopen    NA             T8-C-1    all    all
#> 23  natopen    NA             T8-C-2    all    all
#> 24  natopen    NA             T8-C-2    all    all
#> 25  natopen    NA             T8-C-3    all    all
#> 26  natopen    NA             T8-C-3    all    all
#> 27  natopen    NA            T11-C-1    all    all
#> 28  natopen    NA            T11-C-1    all    all
#> 29  natopen    NA            T11-C-2    all    all
#> 30  natopen    NA            T11-C-2    all    all
#> 31  natopen    NA            T12-C-1    all    all
#> 32  natopen    NA            T12-C-1    all    all
#> 33  natopen    NA            T12-C-2    all    all
#> 34  natopen    NA            T12-C-2    all    all
#> 35  natopen    NA            T13-C-1    all    all
#> 36  natopen    NA            T13-C-1    all    all
#> 37  natopen    NA            T13-C-2    all    all
#> 38  natopen    NA            T13-C-2    all    all
#> 39  natopen    NA            T13-C-3    all    all
#> 40  natopen    NA            T13-C-3    all    all
#> 41  natopen    NA            T13-C-4    all    all
#> 42  natopen    NA            T13-C-4    all    all
#> 43  natopen    NA            T13-C-5    all    all
#> 44  natopen    NA            T13-C-5    all    all
#> 45  natopen    NA            T13-C-6    all    all
#> 46  natopen    NA            T13-C-6    all    all
#> 47  natopen    NA            T13-C-7    all    all
#> 48  natopen    NA            T13-C-7    all    all
#> 49  natopen    NA            T13-C-8    all    all
#> 50  natopen    NA            T13-C-8    all    all
#> 51  natopen    NA            T13-C-9    all    all
#> 52  natopen    NA            T13-C-9    all    all
#> 53  natopen    NA           T13-C-10    all    all
#> 54  natopen    NA           T13-C-10    all    all
#> 55  natopen    NA           T13-C-11    all    all
#> 56  natopen    NA           T13-C-11    all    all
#> 57  natopen    NA           T13-C-12    all    all
#> 58  natopen    NA           T13-C-12    all    all
#> 59  natopen    NA           T13-C-13    all    all
#> 60  natopen    NA           T13-C-13    all    all
#> 61  natopen    NA           T13-C-14    all    all
#> 62  natopen    NA           T13-C-14    all    all
#> 63  natopen    NA           T13-C-15    all    all
#> 64  natopen    NA           T13-C-15    all    all
#> 65  natopen    NA                T15    all    all
#> 66  natopen    NA                T15    all    all
#> 67  natopen    NA       T15-Bratli21    all    all
#> 68  natopen    NA       T15-Bratli21    all    all
#> 69  natopen    NA            T16-C-1    all    all
#> 70  natopen    NA            T16-C-1    all    all
#> 71  natopen    NA            T16-C-2    all    all
#> 72  natopen    NA            T16-C-2    all    all
#> 73  natopen    NA            T16-C-3    all    all
#> 74  natopen    NA            T16-C-3    all    all
#> 75  natopen    NA            T16-C-4    all    all
#> 76  natopen    NA            T16-C-4    all    all
#> 77  natopen    NA            T16-C-5    all    all
#> 78  natopen    NA            T16-C-5    all    all
#> 79  natopen    NA            T16-C-6    all    all
#> 80  natopen    NA            T16-C-6    all    all
#> 81  natopen    NA            T16-C-7    all    all
#> 82  natopen    NA            T16-C-7    all    all
#> 83  natopen    NA            T18-C-1    all    all
#> 84  natopen    NA            T18-C-1    all    all
#> 85  natopen    NA            T18-C-2    all    all
#> 86  natopen    NA            T18-C-2    all    all
#> 87  natopen    NA            T18-C-3    all    all
#> 88  natopen    NA            T18-C-3    all    all
#> 89  natopen    NA            T18-C-4    all    all
#> 90  natopen    NA            T18-C-4    all    all
#> 91  natopen    NA            T21-C-1    all    all
#> 92  natopen    NA            T21-C-1    all    all
#> 93  natopen    NA            T21-C-2    all    all
#> 94  natopen    NA            T21-C-2    all    all
#> 95  natopen    NA            T21-C-3    all    all
#> 96  natopen    NA            T21-C-3    all    all
#> 97  natopen    NA            T21-C-4    all    all
#> 98  natopen    NA            T21-C-4    all    all
#> 99  natopen    NA              T21-7    all    all
#> 100 natopen    NA              T21-7    all    all
#> 101 natopen    NA     T24-C-1_samlet    all    all
#> 102 natopen    NA     T24-C-1_samlet    all    all
#> 103 natopen    NA     T24-C-2_samlet    all    all
#> 104 natopen    NA     T24-C-2_samlet    all    all
#> 105 natopen    NA      T24-C-1_Moere    all    all
#> 106 natopen    NA      T24-C-1_Moere    all    all
#> 107 natopen    NA T24-C-1_Troendelag    all    all
#> 108 natopen    NA T24-C-1_Troendelag    all    all
#> 109 natopen    NA      T24-C-1_Troms    all    all
#> 110 natopen    NA      T24-C-1_Troms    all    all
#> 111 natopen    NA   T24-C-1_Finnmark    all    all
#> 112 natopen    NA   T24-C-1_Finnmark    all    all
#> 113 natopen    NA      T24-C-2_Moere    all    all
#> 114 natopen    NA      T24-C-2_Moere    all    all
#> 115 natopen    NA T24-C-2_Troendelag    all    all
#> 116 natopen    NA T24-C-2_Troendelag    all    all
#> 117 natopen    NA      T24-C-2_Troms    all    all
#> 118 natopen    NA      T24-C-2_Troms    all    all
#> 119 natopen    NA   T24-C-2_Finnmark    all    all
#> 120 natopen    NA   T24-C-2_Finnmark    all    all
#> 121 natopen    NA            T29-C-1    all    all
#> 122 natopen    NA            T29-C-1    all    all
#> 123 natopen    NA            T29-C-2    all    all
#> 124 natopen    NA            T29-C-2    all    all
#> 125 natopen    NA            T29-C-3    all    all
#> 126 natopen    NA            T29-C-3    all    all
#> 127 natopen    NA            T29-C-4    all    all
#> 128 natopen    NA            T29-C-4    all    all
#> 129 natopen    NA            T29-C-5    all    all
#> 130 natopen    NA            T29-C-5    all    all
#> 131 natopen    NA            T29-C-6    all    all
#> 132 natopen    NA            T29-C-6    all    all
#> 133 natopen    NA             T2-C-1    all    all
#> 134 natopen    NA             T2-C-1    all    all
#> 135 natopen    NA             T2-C-2    all    all
#> 136 natopen    NA             T2-C-2    all    all
#> 137 natopen    NA             T2-C-3    all    all
#> 138 natopen    NA             T2-C-3    all    all
#> 139 natopen    NA             T2-C-4    all    all
#> 140 natopen    NA             T2-C-4    all    all
#> 141 natopen    NA             T2-C-5    all    all
#> 142 natopen    NA             T2-C-5    all    all
#> 143 natopen    NA             T2-C-6    all    all
#> 144 natopen    NA             T2-C-6    all    all
#> 145 natopen    NA             T2-C-7    all    all
#> 146 natopen    NA             T2-C-7    all    all
#> 147 natopen    NA             T2-C-8    all    all
#> 148 natopen    NA             T2-C-8    all    all
#> 149 natopen    NA          T2-C-7_BN    all    all
#> 150 natopen    NA          T2-C-7_BN    all    all
#> 151 natopen    NA          T2-C-8_BN    all    all
#> 152 natopen    NA          T2-C-8_BN    all    all
#> 153 natopen    NA             T8-C-1    all    all
#> 154 natopen    NA             T8-C-1    all    all
#> 155 natopen    NA             T8-C-2    all    all
#> 156 natopen    NA             T8-C-2    all    all
#> 157 natopen    NA             T8-C-3    all    all
#> 158 natopen    NA             T8-C-3    all    all
#> 159 natopen    NA            T11-C-1    all    all
#> 160 natopen    NA            T11-C-1    all    all
#> 161 natopen    NA            T11-C-2    all    all
#> 162 natopen    NA            T11-C-2    all    all
#> 163 natopen    NA            T12-C-1    all    all
#> 164 natopen    NA            T12-C-1    all    all
#> 165 natopen    NA            T12-C-2    all    all
#> 166 natopen    NA            T12-C-2    all    all
#> 167 natopen    NA            T13-C-1    all    all
#> 168 natopen    NA            T13-C-1    all    all
#> 169 natopen    NA            T13-C-2    all    all
#> 170 natopen    NA            T13-C-2    all    all
#> 171 natopen    NA            T13-C-3    all    all
#> 172 natopen    NA            T13-C-3    all    all
#> 173 natopen    NA            T13-C-4    all    all
#> 174 natopen    NA            T13-C-4    all    all
#> 175 natopen    NA            T13-C-5    all    all
#> 176 natopen    NA            T13-C-5    all    all
#> 177 natopen    NA            T13-C-6    all    all
#> 178 natopen    NA            T13-C-6    all    all
#> 179 natopen    NA            T13-C-7    all    all
#> 180 natopen    NA            T13-C-7    all    all
#> 181 natopen    NA            T13-C-8    all    all
#> 182 natopen    NA            T13-C-8    all    all
#> 183 natopen    NA            T13-C-9    all    all
#> 184 natopen    NA            T13-C-9    all    all
#> 185 natopen    NA           T13-C-10    all    all
#> 186 natopen    NA           T13-C-10    all    all
#> 187 natopen    NA           T13-C-11    all    all
#> 188 natopen    NA           T13-C-11    all    all
#> 189 natopen    NA           T13-C-12    all    all
#> 190 natopen    NA           T13-C-12    all    all
#> 191 natopen    NA           T13-C-13    all    all
#> 192 natopen    NA           T13-C-13    all    all
#> 193 natopen    NA           T13-C-14    all    all
#> 194 natopen    NA           T13-C-14    all    all
#> 195 natopen    NA           T13-C-15    all    all
#> 196 natopen    NA           T13-C-15    all    all
#> 197 natopen    NA                T15    all    all
#> 198 natopen    NA                T15    all    all
#> 199 natopen    NA       T15-Bratli21    all    all
#> 200 natopen    NA       T15-Bratli21    all    all
#> 201 natopen    NA            T16-C-1    all    all
#> 202 natopen    NA            T16-C-1    all    all
#> 203 natopen    NA            T16-C-2    all    all
#> 204 natopen    NA            T16-C-2    all    all
#> 205 natopen    NA            T16-C-3    all    all
#> 206 natopen    NA            T16-C-3    all    all
#> 207 natopen    NA            T16-C-4    all    all
#> 208 natopen    NA            T16-C-4    all    all
#> 209 natopen    NA            T16-C-5    all    all
#> 210 natopen    NA            T16-C-5    all    all
#> 211 natopen    NA            T16-C-6    all    all
#> 212 natopen    NA            T16-C-6    all    all
#> 213 natopen    NA            T16-C-7    all    all
#> 214 natopen    NA            T16-C-7    all    all
#> 215 natopen    NA            T18-C-1    all    all
#> 216 natopen    NA            T18-C-1    all    all
#> 217 natopen    NA            T18-C-2    all    all
#> 218 natopen    NA            T18-C-2    all    all
#> 219 natopen    NA            T18-C-3    all    all
#> 220 natopen    NA            T18-C-3    all    all
#> 221 natopen    NA            T18-C-4    all    all
#> 222 natopen    NA            T18-C-4    all    all
#> 223 natopen    NA            T21-C-1    all    all
#> 224 natopen    NA            T21-C-1    all    all
#> 225 natopen    NA            T21-C-2    all    all
#> 226 natopen    NA            T21-C-2    all    all
#> 227 natopen    NA            T21-C-3    all    all
#> 228 natopen    NA            T21-C-3    all    all
#> 229 natopen    NA            T21-C-4    all    all
#> 230 natopen    NA            T21-C-4    all    all
#> 231 natopen    NA              T21-7    all    all
#> 232 natopen    NA              T21-7    all    all
#> 233 natopen    NA     T24-C-1_samlet    all    all
#> 234 natopen    NA     T24-C-1_samlet    all    all
#> 235 natopen    NA     T24-C-2_samlet    all    all
#> 236 natopen    NA     T24-C-2_samlet    all    all
#> 237 natopen    NA      T24-C-1_Moere    all    all
#> 238 natopen    NA      T24-C-1_Moere    all    all
#> 239 natopen    NA T24-C-1_Troendelag    all    all
#> 240 natopen    NA T24-C-1_Troendelag    all    all
#> 241 natopen    NA      T24-C-1_Troms    all    all
#> 242 natopen    NA      T24-C-1_Troms    all    all
#> 243 natopen    NA   T24-C-1_Finnmark    all    all
#> 244 natopen    NA   T24-C-1_Finnmark    all    all
#> 245 natopen    NA      T24-C-2_Moere    all    all
#> 246 natopen    NA      T24-C-2_Moere    all    all
#> 247 natopen    NA T24-C-2_Troendelag    all    all
#> 248 natopen    NA T24-C-2_Troendelag    all    all
#> 249 natopen    NA      T24-C-2_Troms    all    all
#> 250 natopen    NA      T24-C-2_Troms    all    all
#> 251 natopen    NA   T24-C-2_Finnmark    all    all
#> 252 natopen    NA   T24-C-2_Finnmark    all    all
#> 253 natopen    NA            T29-C-1    all    all
#> 254 natopen    NA            T29-C-1    all    all
#> 255 natopen    NA            T29-C-2    all    all
#> 256 natopen    NA            T29-C-2    all    all
#> 257 natopen    NA            T29-C-3    all    all
#> 258 natopen    NA            T29-C-3    all    all
#> 259 natopen    NA            T29-C-4    all    all
#> 260 natopen    NA            T29-C-4    all    all
#> 261 natopen    NA            T29-C-5    all    all
#> 262 natopen    NA            T29-C-5    all    all
#> 263 natopen    NA            T29-C-6    all    all
#> 264 natopen    NA            T29-C-6    all    all
#> 265 natopen    NA             T2-C-1    all    all
#> 266 natopen    NA             T2-C-1    all    all
#> 267 natopen    NA             T2-C-2    all    all
#> 268 natopen    NA             T2-C-2    all    all
#> 269 natopen    NA             T2-C-3    all    all
#> 270 natopen    NA             T2-C-3    all    all
#> 271 natopen    NA             T2-C-4    all    all
#> 272 natopen    NA             T2-C-4    all    all
#> 273 natopen    NA             T2-C-5    all    all
#> 274 natopen    NA             T2-C-5    all    all
#> 275 natopen    NA             T2-C-6    all    all
#> 276 natopen    NA             T2-C-6    all    all
#> 277 natopen    NA             T2-C-7    all    all
#> 278 natopen    NA             T2-C-7    all    all
#> 279 natopen    NA             T2-C-8    all    all
#> 280 natopen    NA             T2-C-8    all    all
#> 281 natopen    NA          T2-C-7_BN    all    all
#> 282 natopen    NA          T2-C-7_BN    all    all
#> 283 natopen    NA          T2-C-8_BN    all    all
#> 284 natopen    NA          T2-C-8_BN    all    all
#> 285 natopen    NA             T8-C-1    all    all
#> 286 natopen    NA             T8-C-1    all    all
#> 287 natopen    NA             T8-C-2    all    all
#> 288 natopen    NA             T8-C-2    all    all
#> 289 natopen    NA             T8-C-3    all    all
#> 290 natopen    NA             T8-C-3    all    all
#> 291 natopen    NA            T11-C-1    all    all
#> 292 natopen    NA            T11-C-1    all    all
#> 293 natopen    NA            T11-C-2    all    all
#> 294 natopen    NA            T11-C-2    all    all
#> 295 natopen    NA            T12-C-1    all    all
#> 296 natopen    NA            T12-C-1    all    all
#> 297 natopen    NA            T12-C-2    all    all
#> 298 natopen    NA            T12-C-2    all    all
#> 299 natopen    NA            T13-C-1    all    all
#> 300 natopen    NA            T13-C-1    all    all
#> 301 natopen    NA            T13-C-2    all    all
#> 302 natopen    NA            T13-C-2    all    all
#> 303 natopen    NA            T13-C-3    all    all
#> 304 natopen    NA            T13-C-3    all    all
#> 305 natopen    NA            T13-C-4    all    all
#> 306 natopen    NA            T13-C-4    all    all
#> 307 natopen    NA            T13-C-5    all    all
#> 308 natopen    NA            T13-C-5    all    all
#> 309 natopen    NA            T13-C-6    all    all
#> 310 natopen    NA            T13-C-6    all    all
#> 311 natopen    NA            T13-C-7    all    all
#> 312 natopen    NA            T13-C-7    all    all
#> 313 natopen    NA            T13-C-8    all    all
#> 314 natopen    NA            T13-C-8    all    all
#> 315 natopen    NA            T13-C-9    all    all
#> 316 natopen    NA            T13-C-9    all    all
#> 317 natopen    NA           T13-C-10    all    all
#> 318 natopen    NA           T13-C-10    all    all
#> 319 natopen    NA           T13-C-11    all    all
#> 320 natopen    NA           T13-C-11    all    all
#> 321 natopen    NA           T13-C-12    all    all
#> 322 natopen    NA           T13-C-12    all    all
#> 323 natopen    NA           T13-C-13    all    all
#> 324 natopen    NA           T13-C-13    all    all
#> 325 natopen    NA           T13-C-14    all    all
#> 326 natopen    NA           T13-C-14    all    all
#> 327 natopen    NA           T13-C-15    all    all
#> 328 natopen    NA           T13-C-15    all    all
#> 329 natopen    NA                T15    all    all
#> 330 natopen    NA                T15    all    all
#> 331 natopen    NA       T15-Bratli21    all    all
#> 332 natopen    NA       T15-Bratli21    all    all
#> 333 natopen    NA            T16-C-1    all    all
#> 334 natopen    NA            T16-C-1    all    all
#> 335 natopen    NA            T16-C-2    all    all
#> 336 natopen    NA            T16-C-2    all    all
#> 337 natopen    NA            T16-C-3    all    all
#> 338 natopen    NA            T16-C-3    all    all
#> 339 natopen    NA            T16-C-4    all    all
#> 340 natopen    NA            T16-C-4    all    all
#> 341 natopen    NA            T16-C-5    all    all
#> 342 natopen    NA            T16-C-5    all    all
#> 343 natopen    NA            T16-C-6    all    all
#> 344 natopen    NA            T16-C-6    all    all
#> 345 natopen    NA            T16-C-7    all    all
#> 346 natopen    NA            T16-C-7    all    all
#> 347 natopen    NA            T18-C-1    all    all
#> 348 natopen    NA            T18-C-1    all    all
#> 349 natopen    NA            T18-C-2    all    all
#> 350 natopen    NA            T18-C-2    all    all
#> 351 natopen    NA            T18-C-3    all    all
#> 352 natopen    NA            T18-C-3    all    all
#> 353 natopen    NA            T18-C-4    all    all
#> 354 natopen    NA            T18-C-4    all    all
#> 355 natopen    NA            T21-C-1    all    all
#> 356 natopen    NA            T21-C-1    all    all
#> 357 natopen    NA            T21-C-2    all    all
#> 358 natopen    NA            T21-C-2    all    all
#> 359 natopen    NA            T21-C-3    all    all
#> 360 natopen    NA            T21-C-3    all    all
#> 361 natopen    NA            T21-C-4    all    all
#> 362 natopen    NA            T21-C-4    all    all
#> 363 natopen    NA              T21-7    all    all
#> 364 natopen    NA              T21-7    all    all
#> 365 natopen    NA     T24-C-1_samlet    all    all
#> 366 natopen    NA     T24-C-1_samlet    all    all
#> 367 natopen    NA     T24-C-2_samlet    all    all
#> 368 natopen    NA     T24-C-2_samlet    all    all
#> 369 natopen    NA      T24-C-1_Moere    all    all
#> 370 natopen    NA      T24-C-1_Moere    all    all
#> 371 natopen    NA T24-C-1_Troendelag    all    all
#> 372 natopen    NA T24-C-1_Troendelag    all    all
#> 373 natopen    NA      T24-C-1_Troms    all    all
#> 374 natopen    NA      T24-C-1_Troms    all    all
#> 375 natopen    NA   T24-C-1_Finnmark    all    all
#> 376 natopen    NA   T24-C-1_Finnmark    all    all
#> 377 natopen    NA      T24-C-2_Moere    all    all
#> 378 natopen    NA      T24-C-2_Moere    all    all
#> 379 natopen    NA T24-C-2_Troendelag    all    all
#> 380 natopen    NA T24-C-2_Troendelag    all    all
#> 381 natopen    NA      T24-C-2_Troms    all    all
#> 382 natopen    NA      T24-C-2_Troms    all    all
#> 383 natopen    NA   T24-C-2_Finnmark    all    all
#> 384 natopen    NA   T24-C-2_Finnmark    all    all
#> 385 natopen    NA            T29-C-1    all    all
#> 386 natopen    NA            T29-C-1    all    all
#> 387 natopen    NA            T29-C-2    all    all
#> 388 natopen    NA            T29-C-2    all    all
#> 389 natopen    NA            T29-C-3    all    all
#> 390 natopen    NA            T29-C-3    all    all
#> 391 natopen    NA            T29-C-4    all    all
#> 392 natopen    NA            T29-C-4    all    all
#> 393 natopen    NA            T29-C-5    all    all
#> 394 natopen    NA            T29-C-5    all    all
#> 395 natopen    NA            T29-C-6    all    all
#> 396 natopen    NA            T29-C-6    all    all
#> 397 natopen    NA             T2-C-1    all    all
#> 398 natopen    NA             T2-C-1    all    all
#> 399 natopen    NA             T2-C-2    all    all
#> 400 natopen    NA             T2-C-2    all    all
#> 401 natopen    NA             T2-C-3    all    all
#> 402 natopen    NA             T2-C-3    all    all
#> 403 natopen    NA             T2-C-4    all    all
#> 404 natopen    NA             T2-C-4    all    all
#> 405 natopen    NA             T2-C-5    all    all
#> 406 natopen    NA             T2-C-5    all    all
#> 407 natopen    NA             T2-C-6    all    all
#> 408 natopen    NA             T2-C-6    all    all
#> 409 natopen    NA             T2-C-7    all    all
#> 410 natopen    NA             T2-C-7    all    all
#> 411 natopen    NA             T2-C-8    all    all
#> 412 natopen    NA             T2-C-8    all    all
#> 413 natopen    NA          T2-C-7_BN    all    all
#> 414 natopen    NA          T2-C-7_BN    all    all
#> 415 natopen    NA          T2-C-8_BN    all    all
#> 416 natopen    NA          T2-C-8_BN    all    all
#> 417 natopen    NA             T8-C-1    all    all
#> 418 natopen    NA             T8-C-1    all    all
#> 419 natopen    NA             T8-C-2    all    all
#> 420 natopen    NA             T8-C-2    all    all
#> 421 natopen    NA             T8-C-3    all    all
#> 422 natopen    NA             T8-C-3    all    all
#> 423 natopen    NA            T11-C-1    all    all
#> 424 natopen    NA            T11-C-1    all    all
#> 425 natopen    NA            T11-C-2    all    all
#> 426 natopen    NA            T11-C-2    all    all
#> 427 natopen    NA            T12-C-1    all    all
#> 428 natopen    NA            T12-C-1    all    all
#> 429 natopen    NA            T12-C-2    all    all
#> 430 natopen    NA            T12-C-2    all    all
#> 431 natopen    NA            T13-C-1    all    all
#> 432 natopen    NA            T13-C-1    all    all
#> 433 natopen    NA            T13-C-2    all    all
#> 434 natopen    NA            T13-C-2    all    all
#> 435 natopen    NA            T13-C-3    all    all
#> 436 natopen    NA            T13-C-3    all    all
#> 437 natopen    NA            T13-C-4    all    all
#> 438 natopen    NA            T13-C-4    all    all
#> 439 natopen    NA            T13-C-5    all    all
#> 440 natopen    NA            T13-C-5    all    all
#> 441 natopen    NA            T13-C-6    all    all
#> 442 natopen    NA            T13-C-6    all    all
#> 443 natopen    NA            T13-C-7    all    all
#> 444 natopen    NA            T13-C-7    all    all
#> 445 natopen    NA            T13-C-8    all    all
#> 446 natopen    NA            T13-C-8    all    all
#> 447 natopen    NA            T13-C-9    all    all
#> 448 natopen    NA            T13-C-9    all    all
#> 449 natopen    NA           T13-C-10    all    all
#> 450 natopen    NA           T13-C-10    all    all
#> 451 natopen    NA           T13-C-11    all    all
#> 452 natopen    NA           T13-C-11    all    all
#> 453 natopen    NA           T13-C-12    all    all
#> 454 natopen    NA           T13-C-12    all    all
#> 455 natopen    NA           T13-C-13    all    all
#> 456 natopen    NA           T13-C-13    all    all
#> 457 natopen    NA           T13-C-14    all    all
#> 458 natopen    NA           T13-C-14    all    all
#> 459 natopen    NA           T13-C-15    all    all
#> 460 natopen    NA           T13-C-15    all    all
#> 461 natopen    NA                T15    all    all
#> 462 natopen    NA                T15    all    all
#> 463 natopen    NA       T15-Bratli21    all    all
#> 464 natopen    NA       T15-Bratli21    all    all
#> 465 natopen    NA            T16-C-1    all    all
#> 466 natopen    NA            T16-C-1    all    all
#> 467 natopen    NA            T16-C-2    all    all
#> 468 natopen    NA            T16-C-2    all    all
#> 469 natopen    NA            T16-C-3    all    all
#> 470 natopen    NA            T16-C-3    all    all
#> 471 natopen    NA            T16-C-4    all    all
#> 472 natopen    NA            T16-C-4    all    all
#> 473 natopen    NA            T16-C-5    all    all
#> 474 natopen    NA            T16-C-5    all    all
#> 475 natopen    NA            T16-C-6    all    all
#> 476 natopen    NA            T16-C-6    all    all
#> 477 natopen    NA            T16-C-7    all    all
#> 478 natopen    NA            T16-C-7    all    all
#> 479 natopen    NA            T18-C-1    all    all
#> 480 natopen    NA            T18-C-1    all    all
#> 481 natopen    NA            T18-C-2    all    all
#> 482 natopen    NA            T18-C-2    all    all
#> 483 natopen    NA            T18-C-3    all    all
#> 484 natopen    NA            T18-C-3    all    all
#> 485 natopen    NA            T18-C-4    all    all
#> 486 natopen    NA            T18-C-4    all    all
#> 487 natopen    NA            T21-C-1    all    all
#> 488 natopen    NA            T21-C-1    all    all
#> 489 natopen    NA            T21-C-2    all    all
#> 490 natopen    NA            T21-C-2    all    all
#> 491 natopen    NA            T21-C-3    all    all
#> 492 natopen    NA            T21-C-3    all    all
#> 493 natopen    NA            T21-C-4    all    all
#> 494 natopen    NA            T21-C-4    all    all
#> 495 natopen    NA              T21-7    all    all
#> 496 natopen    NA              T21-7    all    all
#> 497 natopen    NA     T24-C-1_samlet    all    all
#> 498 natopen    NA     T24-C-1_samlet    all    all
#> 499 natopen    NA     T24-C-2_samlet    all    all
#> 500 natopen    NA     T24-C-2_samlet    all    all
#> 501 natopen    NA      T24-C-1_Moere    all    all
#> 502 natopen    NA      T24-C-1_Moere    all    all
#> 503 natopen    NA T24-C-1_Troendelag    all    all
#> 504 natopen    NA T24-C-1_Troendelag    all    all
#> 505 natopen    NA      T24-C-1_Troms    all    all
#> 506 natopen    NA      T24-C-1_Troms    all    all
#> 507 natopen    NA   T24-C-1_Finnmark    all    all
#> 508 natopen    NA   T24-C-1_Finnmark    all    all
#> 509 natopen    NA      T24-C-2_Moere    all    all
#> 510 natopen    NA      T24-C-2_Moere    all    all
#> 511 natopen    NA T24-C-2_Troendelag    all    all
#> 512 natopen    NA T24-C-2_Troendelag    all    all
#> 513 natopen    NA      T24-C-2_Troms    all    all
#> 514 natopen    NA      T24-C-2_Troms    all    all
#> 515 natopen    NA   T24-C-2_Finnmark    all    all
#> 516 natopen    NA   T24-C-2_Finnmark    all    all
#> 517 natopen    NA            T29-C-1    all    all
#> 518 natopen    NA            T29-C-1    all    all
#> 519 natopen    NA            T29-C-2    all    all
#> 520 natopen    NA            T29-C-2    all    all
#> 521 natopen    NA            T29-C-3    all    all
#> 522 natopen    NA            T29-C-3    all    all
#> 523 natopen    NA            T29-C-4    all    all
#> 524 natopen    NA            T29-C-4    all    all
#> 525 natopen    NA            T29-C-5    all    all
#> 526 natopen    NA            T29-C-5    all    all
#> 527 natopen    NA            T29-C-6    all    all
#> 528 natopen    NA            T29-C-6    all    all
#> 529 natopen    NA             T2-C-1    all    all
#> 530 natopen    NA             T2-C-1    all    all
#> 531 natopen    NA             T2-C-2    all    all
#> 532 natopen    NA             T2-C-2    all    all
#> 533 natopen    NA             T2-C-3    all    all
#> 534 natopen    NA             T2-C-3    all    all
#> 535 natopen    NA             T2-C-4    all    all
#> 536 natopen    NA             T2-C-4    all    all
#> 537 natopen    NA             T2-C-5    all    all
#> 538 natopen    NA             T2-C-5    all    all
#> 539 natopen    NA             T2-C-6    all    all
#> 540 natopen    NA             T2-C-6    all    all
#> 541 natopen    NA             T2-C-7    all    all
#> 542 natopen    NA             T2-C-7    all    all
#> 543 natopen    NA             T2-C-8    all    all
#> 544 natopen    NA             T2-C-8    all    all
#> 545 natopen    NA          T2-C-7_BN    all    all
#> 546 natopen    NA          T2-C-7_BN    all    all
#> 547 natopen    NA          T2-C-8_BN    all    all
#> 548 natopen    NA          T2-C-8_BN    all    all
#> 549 natopen    NA             T8-C-1    all    all
#> 550 natopen    NA             T8-C-1    all    all
#> 551 natopen    NA             T8-C-2    all    all
#> 552 natopen    NA             T8-C-2    all    all
#> 553 natopen    NA             T8-C-3    all    all
#> 554 natopen    NA             T8-C-3    all    all
#> 555 natopen    NA            T11-C-1    all    all
#> 556 natopen    NA            T11-C-1    all    all
#> 557 natopen    NA            T11-C-2    all    all
#> 558 natopen    NA            T11-C-2    all    all
#> 559 natopen    NA            T12-C-1    all    all
#> 560 natopen    NA            T12-C-1    all    all
#> 561 natopen    NA            T12-C-2    all    all
#> 562 natopen    NA            T12-C-2    all    all
#> 563 natopen    NA            T13-C-1    all    all
#> 564 natopen    NA            T13-C-1    all    all
#> 565 natopen    NA            T13-C-2    all    all
#> 566 natopen    NA            T13-C-2    all    all
#> 567 natopen    NA            T13-C-3    all    all
#> 568 natopen    NA            T13-C-3    all    all
#> 569 natopen    NA            T13-C-4    all    all
#> 570 natopen    NA            T13-C-4    all    all
#> 571 natopen    NA            T13-C-5    all    all
#> 572 natopen    NA            T13-C-5    all    all
#> 573 natopen    NA            T13-C-6    all    all
#> 574 natopen    NA            T13-C-6    all    all
#> 575 natopen    NA            T13-C-7    all    all
#> 576 natopen    NA            T13-C-7    all    all
#> 577 natopen    NA            T13-C-8    all    all
#> 578 natopen    NA            T13-C-8    all    all
#> 579 natopen    NA            T13-C-9    all    all
#> 580 natopen    NA            T13-C-9    all    all
#> 581 natopen    NA           T13-C-10    all    all
#> 582 natopen    NA           T13-C-10    all    all
#> 583 natopen    NA           T13-C-11    all    all
#> 584 natopen    NA           T13-C-11    all    all
#> 585 natopen    NA           T13-C-12    all    all
#> 586 natopen    NA           T13-C-12    all    all
#> 587 natopen    NA           T13-C-13    all    all
#> 588 natopen    NA           T13-C-13    all    all
#> 589 natopen    NA           T13-C-14    all    all
#> 590 natopen    NA           T13-C-14    all    all
#> 591 natopen    NA           T13-C-15    all    all
#> 592 natopen    NA           T13-C-15    all    all
#> 593 natopen    NA                T15    all    all
#> 594 natopen    NA                T15    all    all
#> 595 natopen    NA       T15-Bratli21    all    all
#> 596 natopen    NA       T15-Bratli21    all    all
#> 597 natopen    NA            T16-C-1    all    all
#> 598 natopen    NA            T16-C-1    all    all
#> 599 natopen    NA            T16-C-2    all    all
#> 600 natopen    NA            T16-C-2    all    all
#> 601 natopen    NA            T16-C-3    all    all
#> 602 natopen    NA            T16-C-3    all    all
#> 603 natopen    NA            T16-C-4    all    all
#> 604 natopen    NA            T16-C-4    all    all
#> 605 natopen    NA            T16-C-5    all    all
#> 606 natopen    NA            T16-C-5    all    all
#> 607 natopen    NA            T16-C-6    all    all
#> 608 natopen    NA            T16-C-6    all    all
#> 609 natopen    NA            T16-C-7    all    all
#> 610 natopen    NA            T16-C-7    all    all
#> 611 natopen    NA            T18-C-1    all    all
#> 612 natopen    NA            T18-C-1    all    all
#> 613 natopen    NA            T18-C-2    all    all
#> 614 natopen    NA            T18-C-2    all    all
#> 615 natopen    NA            T18-C-3    all    all
#> 616 natopen    NA            T18-C-3    all    all
#> 617 natopen    NA            T18-C-4    all    all
#> 618 natopen    NA            T18-C-4    all    all
#> 619 natopen    NA            T21-C-1    all    all
#> 620 natopen    NA            T21-C-1    all    all
#> 621 natopen    NA            T21-C-2    all    all
#> 622 natopen    NA            T21-C-2    all    all
#> 623 natopen    NA            T21-C-3    all    all
#> 624 natopen    NA            T21-C-3    all    all
#> 625 natopen    NA            T21-C-4    all    all
#> 626 natopen    NA            T21-C-4    all    all
#> 627 natopen    NA              T21-7    all    all
#> 628 natopen    NA              T21-7    all    all
#> 629 natopen    NA     T24-C-1_samlet    all    all
#> 630 natopen    NA     T24-C-1_samlet    all    all
#> 631 natopen    NA     T24-C-2_samlet    all    all
#> 632 natopen    NA     T24-C-2_samlet    all    all
#> 633 natopen    NA      T24-C-1_Moere    all    all
#> 634 natopen    NA      T24-C-1_Moere    all    all
#> 635 natopen    NA T24-C-1_Troendelag    all    all
#> 636 natopen    NA T24-C-1_Troendelag    all    all
#> 637 natopen    NA      T24-C-1_Troms    all    all
#> 638 natopen    NA      T24-C-1_Troms    all    all
#> 639 natopen    NA   T24-C-1_Finnmark    all    all
#> 640 natopen    NA   T24-C-1_Finnmark    all    all
#> 641 natopen    NA      T24-C-2_Moere    all    all
#> 642 natopen    NA      T24-C-2_Moere    all    all
#> 643 natopen    NA T24-C-2_Troendelag    all    all
#> 644 natopen    NA T24-C-2_Troendelag    all    all
#> 645 natopen    NA      T24-C-2_Troms    all    all
#> 646 natopen    NA      T24-C-2_Troms    all    all
#> 647 natopen    NA   T24-C-2_Finnmark    all    all
#> 648 natopen    NA   T24-C-2_Finnmark    all    all
#> 649 natopen    NA            T29-C-1    all    all
#> 650 natopen    NA            T29-C-1    all    all
#> 651 natopen    NA            T29-C-2    all    all
#> 652 natopen    NA            T29-C-2    all    all
#> 653 natopen    NA            T29-C-3    all    all
#> 654 natopen    NA            T29-C-3    all    all
#> 655 natopen    NA            T29-C-4    all    all
#> 656 natopen    NA            T29-C-4    all    all
#> 657 natopen    NA            T29-C-5    all    all
#> 658 natopen    NA            T29-C-5    all    all
#> 659 natopen    NA            T29-C-6    all    all
#> 660 natopen    NA            T29-C-6    all    all
#> 661 natopen    NA             T2-C-1    all    all
#> 662 natopen    NA             T2-C-1    all    all
#> 663 natopen    NA             T2-C-2    all    all
#> 664 natopen    NA             T2-C-2    all    all
#> 665 natopen    NA             T2-C-3    all    all
#> 666 natopen    NA             T2-C-3    all    all
#> 667 natopen    NA             T2-C-4    all    all
#> 668 natopen    NA             T2-C-4    all    all
#> 669 natopen    NA             T2-C-5    all    all
#> 670 natopen    NA             T2-C-5    all    all
#> 671 natopen    NA             T2-C-6    all    all
#> 672 natopen    NA             T2-C-6    all    all
#> 673 natopen    NA             T2-C-7    all    all
#> 674 natopen    NA             T2-C-7    all    all
#> 675 natopen    NA             T2-C-8    all    all
#> 676 natopen    NA             T2-C-8    all    all
#> 677 natopen    NA          T2-C-7_BN    all    all
#> 678 natopen    NA          T2-C-7_BN    all    all
#> 679 natopen    NA          T2-C-8_BN    all    all
#> 680 natopen    NA          T2-C-8_BN    all    all
#> 681 natopen    NA             T8-C-1    all    all
#> 682 natopen    NA             T8-C-1    all    all
#> 683 natopen    NA             T8-C-2    all    all
#> 684 natopen    NA             T8-C-2    all    all
#> 685 natopen    NA             T8-C-3    all    all
#> 686 natopen    NA             T8-C-3    all    all
#> 687 natopen    NA            T11-C-1    all    all
#> 688 natopen    NA            T11-C-1    all    all
#> 689 natopen    NA            T11-C-2    all    all
#> 690 natopen    NA            T11-C-2    all    all
#> 691 natopen    NA            T12-C-1    all    all
#> 692 natopen    NA            T12-C-1    all    all
#> 693 natopen    NA            T12-C-2    all    all
#> 694 natopen    NA            T12-C-2    all    all
#> 695 natopen    NA            T13-C-1    all    all
#> 696 natopen    NA            T13-C-1    all    all
#> 697 natopen    NA            T13-C-2    all    all
#> 698 natopen    NA            T13-C-2    all    all
#> 699 natopen    NA            T13-C-3    all    all
#> 700 natopen    NA            T13-C-3    all    all
#> 701 natopen    NA            T13-C-4    all    all
#> 702 natopen    NA            T13-C-4    all    all
#> 703 natopen    NA            T13-C-5    all    all
#> 704 natopen    NA            T13-C-5    all    all
#> 705 natopen    NA            T13-C-6    all    all
#> 706 natopen    NA            T13-C-6    all    all
#> 707 natopen    NA            T13-C-7    all    all
#> 708 natopen    NA            T13-C-7    all    all
#> 709 natopen    NA            T13-C-8    all    all
#> 710 natopen    NA            T13-C-8    all    all
#> 711 natopen    NA            T13-C-9    all    all
#> 712 natopen    NA            T13-C-9    all    all
#> 713 natopen    NA           T13-C-10    all    all
#> 714 natopen    NA           T13-C-10    all    all
#> 715 natopen    NA           T13-C-11    all    all
#> 716 natopen    NA           T13-C-11    all    all
#> 717 natopen    NA           T13-C-12    all    all
#> 718 natopen    NA           T13-C-12    all    all
#> 719 natopen    NA           T13-C-13    all    all
#> 720 natopen    NA           T13-C-13    all    all
#> 721 natopen    NA           T13-C-14    all    all
#> 722 natopen    NA           T13-C-14    all    all
#> 723 natopen    NA           T13-C-15    all    all
#> 724 natopen    NA           T13-C-15    all    all
#> 725 natopen    NA                T15    all    all
#> 726 natopen    NA                T15    all    all
#> 727 natopen    NA       T15-Bratli21    all    all
#> 728 natopen    NA       T15-Bratli21    all    all
#> 729 natopen    NA            T16-C-1    all    all
#> 730 natopen    NA            T16-C-1    all    all
#> 731 natopen    NA            T16-C-2    all    all
#> 732 natopen    NA            T16-C-2    all    all
#> 733 natopen    NA            T16-C-3    all    all
#> 734 natopen    NA            T16-C-3    all    all
#> 735 natopen    NA            T16-C-4    all    all
#> 736 natopen    NA            T16-C-4    all    all
#> 737 natopen    NA            T16-C-5    all    all
#> 738 natopen    NA            T16-C-5    all    all
#> 739 natopen    NA            T16-C-6    all    all
#> 740 natopen    NA            T16-C-6    all    all
#> 741 natopen    NA            T16-C-7    all    all
#> 742 natopen    NA            T16-C-7    all    all
#> 743 natopen    NA            T18-C-1    all    all
#> 744 natopen    NA            T18-C-1    all    all
#> 745 natopen    NA            T18-C-2    all    all
#> 746 natopen    NA            T18-C-2    all    all
#> 747 natopen    NA            T18-C-3    all    all
#> 748 natopen    NA            T18-C-3    all    all
#> 749 natopen    NA            T18-C-4    all    all
#> 750 natopen    NA            T18-C-4    all    all
#> 751 natopen    NA            T21-C-1    all    all
#> 752 natopen    NA            T21-C-1    all    all
#> 753 natopen    NA            T21-C-2    all    all
#> 754 natopen    NA            T21-C-2    all    all
#> 755 natopen    NA            T21-C-3    all    all
#> 756 natopen    NA            T21-C-3    all    all
#> 757 natopen    NA            T21-C-4    all    all
#> 758 natopen    NA            T21-C-4    all    all
#> 759 natopen    NA              T21-7    all    all
#> 760 natopen    NA              T21-7    all    all
#> 761 natopen    NA     T24-C-1_samlet    all    all
#> 762 natopen    NA     T24-C-1_samlet    all    all
#> 763 natopen    NA     T24-C-2_samlet    all    all
#> 764 natopen    NA     T24-C-2_samlet    all    all
#> 765 natopen    NA      T24-C-1_Moere    all    all
#> 766 natopen    NA      T24-C-1_Moere    all    all
#> 767 natopen    NA T24-C-1_Troendelag    all    all
#> 768 natopen    NA T24-C-1_Troendelag    all    all
#> 769 natopen    NA      T24-C-1_Troms    all    all
#> 770 natopen    NA      T24-C-1_Troms    all    all
#> 771 natopen    NA   T24-C-1_Finnmark    all    all
#> 772 natopen    NA   T24-C-1_Finnmark    all    all
#> 773 natopen    NA      T24-C-2_Moere    all    all
#> 774 natopen    NA      T24-C-2_Moere    all    all
#> 775 natopen    NA T24-C-2_Troendelag    all    all
#> 776 natopen    NA T24-C-2_Troendelag    all    all
#> 777 natopen    NA      T24-C-2_Troms    all    all
#> 778 natopen    NA      T24-C-2_Troms    all    all
#> 779 natopen    NA   T24-C-2_Finnmark    all    all
#> 780 natopen    NA   T24-C-2_Finnmark    all    all
#> 781 natopen    NA            T29-C-1    all    all
#> 782 natopen    NA            T29-C-1    all    all
#> 783 natopen    NA            T29-C-2    all    all
#> 784 natopen    NA            T29-C-2    all    all
#> 785 natopen    NA            T29-C-3    all    all
#> 786 natopen    NA            T29-C-3    all    all
#> 787 natopen    NA            T29-C-4    all    all
#> 788 natopen    NA            T29-C-4    all    all
#> 789 natopen    NA            T29-C-5    all    all
#> 790 natopen    NA            T29-C-5    all    all
#> 791 natopen    NA            T29-C-6    all    all
#> 792 natopen    NA            T29-C-6    all    all
#>                   Ind         Rv          Gv maxmin
#> 1                 CC1 0.21872555 0.087668322      0
#> 2                 CC2 0.21872555 0.388888889      1
#> 3                 CC1 0.19671091 0.053823529      0
#> 4                 CC2 0.19671091 0.284348739      1
#> 5                 CC1 0.17141992 0.037538818      0
#> 6                 CC2 0.17141992 0.392058791      1
#> 7                 CC1 0.12230736 0.025238496      0
#> 8                 CC2 0.12230736 0.192974372      1
#> 9                 CC1 0.20897488 0.109199030      0
#> 10                CC2 0.20897488 0.338089226      1
#> 11                CC1 0.09912008 0.017065773      0
#> 12                CC2 0.09912008 0.255937770      1
#> 13                CC1 0.25719120 0.156205369      0
#> 14                CC2 0.25719120 0.365205532      1
#> 15                CC1 0.25018911 0.180613619      0
#> 16                CC2 0.25018911 0.338219364      1
#> 17                CC1 0.20957553 0.102246546      0
#> 18                CC2 0.20957553 0.368063711      1
#> 19                CC1 0.17847283 0.074271005      0
#> 20                CC2 0.17847283 0.316241762      1
#> 21                CC1 0.21488110 0.093007457      0
#> 22                CC2 0.21488110 0.369565217      1
#> 23                CC1         NA          NA      0
#> 24                CC2         NA          NA      1
#> 25                CC1 0.15415885 0.025252525      0
#> 26                CC2 0.15415885 0.287878788      1
#> 27                CC1         NA          NA      0
#> 28                CC2         NA          NA      1
#> 29                CC1         NA          NA      0
#> 30                CC2         NA          NA      1
#> 31                CC1         NA          NA      0
#> 32                CC2         NA          NA      1
#> 33                CC1 0.40597466 0.290602398      0
#> 34                CC2 0.40597466 0.552983004      1
#> 35                CC1         NA          NA      0
#> 36                CC2         NA          NA      1
#> 37                CC1         NA          NA      0
#> 38                CC2         NA          NA      1
#> 39                CC1         NA          NA      0
#> 40                CC2         NA          NA      1
#> 41                CC1         NA          NA      0
#> 42                CC2         NA          NA      1
#> 43                CC1 0.16666667 0.081300813      0
#> 44                CC2 0.16666667 0.268292683      1
#> 45                CC1 0.18405797 0.043827986      0
#> 46                CC2 0.18405797 0.308712121      1
#> 47                CC1 0.25000000 0.012303889      0
#> 48                CC2 0.25000000 0.583333333      1
#> 49                CC1 0.18292683 0.081300813      0
#> 50                CC2 0.18292683 0.319105691      1
#> 51                CC1 0.20114943 0.124579125      0
#> 52                CC2 0.20114943 0.351653613      1
#> 53                CC1         NA          NA      0
#> 54                CC2         NA          NA      1
#> 55                CC1         NA          NA      0
#> 56                CC2         NA          NA      1
#> 57                CC1         NA          NA      0
#> 58                CC2         NA          NA      1
#> 59                CC1         NA          NA      0
#> 60                CC2         NA          NA      1
#> 61                CC1         NA          NA      0
#> 62                CC2         NA          NA      1
#> 63                CC1         NA          NA      0
#> 64                CC2         NA          NA      1
#> 65                CC1 0.36111111 0.244990591      0
#> 66                CC2 0.36111111 0.513958333      1
#> 67                CC1 0.29379425 0.250609052      0
#> 68                CC2 0.29379425 0.382088652      1
#> 69                CC1 0.25693620 0.162342987      0
#> 70                CC2 0.25693620 0.376628082      1
#> 71                CC1 0.28641287 0.163574851      0
#> 72                CC2 0.28641287 0.420055922      1
#> 73                CC1 0.23896199 0.148109995      0
#> 74                CC2 0.23896199 0.363760505      1
#> 75                CC1 0.25527663 0.147132313      0
#> 76                CC2 0.25527663 0.381290472      1
#> 77                CC1 0.41732082 0.270608011      0
#> 78                CC2 0.41732082 0.675713465      1
#> 79                CC1 0.45307881 0.285331552      0
#> 80                CC2 0.45307881 0.680374460      1
#> 81                CC1 0.30450974 0.099358975      0
#> 82                CC2 0.30450974 0.576942091      1
#> 83                CC1 0.44391944 0.242514345      0
#> 84                CC2 0.44391944 0.628093140      1
#> 85                CC1 0.34454332 0.167101520      0
#> 86                CC2 0.34454332 0.519109405      1
#> 87                CC1         NA          NA      0
#> 88                CC2         NA          NA      1
#> 89                CC1         NA          NA      0
#> 90                CC2         NA          NA      1
#> 91                CC1 0.37662986 0.187933803      0
#> 92                CC2 0.37662986 0.575805454      1
#> 93                CC1 0.39989343 0.301305299      0
#> 94                CC2 0.39989343 0.497605180      1
#> 95                CC1 0.27771966 0.172628307      0
#> 96                CC2 0.27771966 0.395872477      1
#> 97                CC1 0.34709012 0.191201637      0
#> 98                CC2 0.34709012 0.502898603      1
#> 99                CC1 0.25972603 0.089675665      0
#> 100               CC2 0.25972603 0.421311900      1
#> 101               CC1 0.48453591 0.300038824      0
#> 102               CC2 0.48453591 0.641916891      1
#> 103               CC1 0.34885701 0.157367254      0
#> 104               CC2 0.34885701 0.566391850      1
#> 105               CC1 0.48333123 0.272987388      0
#> 106               CC2 0.48333123 0.661565655      1
#> 107               CC1 0.56287224 0.311635333      0
#> 108               CC2 0.56287224 0.737959957      1
#> 109               CC1 0.39119214 0.211696658      0
#> 110               CC2 0.39119214 0.578294095      1
#> 111               CC1 0.36777152 0.177716968      0
#> 112               CC2 0.36777152 0.518730127      1
#> 113               CC1 0.43629763 0.127450980      0
#> 114               CC2 0.43629763 0.654814426      1
#> 115               CC1 0.44182390 0.188487595      0
#> 116               CC2 0.44182390 0.693677626      1
#> 117               CC1 0.32321389 0.183847371      0
#> 118               CC2 0.32321389 0.425179887      1
#> 119               CC1 0.41887963 0.250079822      0
#> 120               CC2 0.41887963 0.594376585      1
#> 121               CC1 0.37098021 0.184157732      0
#> 122               CC2 0.37098021 0.575808081      1
#> 123               CC1 0.33291604 0.207074422      0
#> 124               CC2 0.33291604 0.455714782      1
#> 125               CC1 0.16486025 0.095851739      0
#> 126               CC2 0.16486025 0.253299785      1
#> 127               CC1 0.21052632 0.087782166      0
#> 128               CC2 0.21052632 0.372135936      1
#> 129               CC1 0.46304153 0.310887004      0
#> 130               CC2 0.46304153 0.626473781      1
#> 131               CC1 0.41569491 0.232136387      0
#> 132               CC2 0.41569491 0.626674411      1
#> 133               SS1 0.67063492 0.496031746      0
#> 134               SS2 0.67063492 0.744732093      1
#> 135               SS1 0.65859351 0.428523810      0
#> 136               SS2 0.65859351 0.779766768      1
#> 137               SS1 0.56470638 0.329815301      0
#> 138               SS2 0.56470638 0.793685100      1
#> 139               SS1 0.56582778 0.327729100      0
#> 140               SS2 0.56582778 0.766533689      1
#> 141               SS1 0.52346972 0.360701100      0
#> 142               SS2 0.52346972 0.691694099      1
#> 143               SS1 0.58410216 0.435242751      0
#> 144               SS2 0.58410216 0.778687555      1
#> 145               SS1 0.55090793 0.441457929      0
#> 146               SS2 0.55090793 0.673832169      1
#> 147               SS1 0.57752100 0.470574683      0
#> 148               SS2 0.57752100 0.697413954      1
#> 149               SS1 0.57902923 0.462116259      0
#> 150               SS2 0.57902923 0.752476088      1
#> 151               SS1 0.60815835 0.463891580      0
#> 152               SS2 0.60815835 0.790995798      1
#> 153               SS1 0.33333333 0.155108025      0
#> 154               SS2 0.33333333 0.524533092      1
#> 155               SS1         NA          NA      0
#> 156               SS2         NA          NA      1
#> 157               SS1 0.56818182 0.346414806      0
#> 158               SS2 0.56818182 0.805555556      1
#> 159               SS1         NA          NA      0
#> 160               SS2         NA          NA      1
#> 161               SS1         NA          NA      0
#> 162               SS2         NA          NA      1
#> 163               SS1         NA          NA      0
#> 164               SS2         NA          NA      1
#> 165               SS1 0.25215467 0.155818787      0
#> 166               SS2 0.25215467 0.379520267      1
#> 167               SS1         NA          NA      0
#> 168               SS2         NA          NA      1
#> 169               SS1         NA          NA      0
#> 170               SS2         NA          NA      1
#> 171               SS1         NA          NA      0
#> 172               SS2         NA          NA      1
#> 173               SS1         NA          NA      0
#> 174               SS2         NA          NA      1
#> 175               SS1 0.58333333 0.405053266      0
#> 176               SS2 0.58333333 0.821138212      1
#> 177               SS1 0.50505301 0.346037866      0
#> 178               SS2 0.50505301 0.640921168      1
#> 179               SS1 0.57507473 0.207409555      0
#> 180               SS2 0.57507473 0.979919679      1
#> 181               SS1 0.61111111 0.416666667      0
#> 182               SS2 0.61111111 0.837398374      1
#> 183               SS1 0.55962644 0.326849857      0
#> 184               SS2 0.55962644 0.722341954      1
#> 185               SS1         NA          NA      0
#> 186               SS2         NA          NA      1
#> 187               SS1         NA          NA      0
#> 188               SS2         NA          NA      1
#> 189               SS1         NA          NA      0
#> 190               SS2         NA          NA      1
#> 191               SS1         NA          NA      0
#> 192               SS2         NA          NA      1
#> 193               SS1         NA          NA      0
#> 194               SS2         NA          NA      1
#> 195               SS1         NA          NA      0
#> 196               SS2         NA          NA      1
#> 197               SS1 0.40638940 0.233295494      0
#> 198               SS2 0.40638940 0.560823560      1
#> 199               SS1 0.53193205 0.435684880      0
#> 200               SS2 0.53193205 0.598309619      1
#> 201               SS1 0.47113943 0.279155891      0
#> 202               SS2 0.47113943 0.639553454      1
#> 203               SS1 0.48381744 0.310350085      0
#> 204               SS2 0.48381744 0.682296836      1
#> 205               SS1 0.49905906 0.378845415      0
#> 206               SS2 0.49905906 0.626709829      1
#> 207               SS1 0.52809611 0.376717790      0
#> 208               SS2 0.52809611 0.674455094      1
#> 209               SS1 0.34122203 0.164448153      0
#> 210               SS2 0.34122203 0.531108136      1
#> 211               SS1 0.35596430 0.195725145      0
#> 212               SS2 0.35596430 0.517447459      1
#> 213               SS1 0.43693694 0.222222223      0
#> 214               SS2 0.43693694 0.638888889      1
#> 215               SS1 0.35012504 0.164932380      0
#> 216               SS2 0.35012504 0.575820324      1
#> 217               SS1 0.14347518 0.034689455      0
#> 218               SS2 0.14347518 0.270842474      1
#> 219               SS1         NA          NA      0
#> 220               SS2         NA          NA      1
#> 221               SS1         NA          NA      0
#> 222               SS2         NA          NA      1
#> 223               SS1 0.27795685 0.030067155      0
#> 224               SS2 0.27795685 0.503907800      1
#> 225               SS1 0.44474045 0.345761792      0
#> 226               SS2 0.44474045 0.566052357      1
#> 227               SS1 0.46802992 0.343577594      0
#> 228               SS2 0.46802992 0.604391895      1
#> 229               SS1 0.36723930 0.125478216      0
#> 230               SS2 0.36723930 0.592490518      1
#> 231               SS1 0.42210487 0.201083409      0
#> 232               SS2 0.42210487 0.752103568      1
#> 233               SS1 0.11784811 0.024354072      0
#> 234               SS2 0.11784811 0.237209290      1
#> 235               SS1 0.07598784 0.002446965      0
#> 236               SS2 0.07598784 0.270697544      1
#> 237               SS1 0.12427942 0.024361766      0
#> 238               SS2 0.12427942 0.293769010      1
#> 239               SS1 0.12438130 0.011030933      0
#> 240               SS2 0.12438130 0.293993797      1
#> 241               SS1 0.16962269 0.016121596      0
#> 242               SS2 0.16962269 0.319216178      1
#> 243               SS1 0.16703751 0.008425297      0
#> 244               SS2 0.16703751 0.385828828      1
#> 245               SS1 0.07921569 0.000000000      0
#> 246               SS2 0.07921569 0.300000000      1
#> 247               SS1 0.09975386 0.004898777      0
#> 248               SS2 0.09975386 0.272031820      1
#> 249               SS1 0.08695652 0.001579779      0
#> 250               SS2 0.08695652 0.234369028      1
#> 251               SS1 0.16601732 0.032845002      0
#> 252               SS2 0.16601732 0.308944231      1
#> 253               SS1 0.23484848 0.092580409      0
#> 254               SS2 0.23484848 0.465031898      1
#> 255               SS1 0.52754059 0.389448156      0
#> 256               SS2 0.52754059 0.680192098      1
#> 257               SS1 0.55685255 0.407042639      0
#> 258               SS2 0.55685255 0.702205553      1
#> 259               SS1 0.46883828 0.261498756      0
#> 260               SS2 0.46883828 0.661887255      1
#> 261               SS1 0.13930852 0.029733603      0
#> 262               SS2 0.13930852 0.282930537      1
#> 263               SS1 0.21708726 0.038280536      0
#> 264               SS2 0.21708726 0.452425595      1
#> 265               RR1 0.11207735 0.005735723      0
#> 266               RR2 0.11207735 0.287071609      1
#> 267               RR1 0.15977961 0.000000000      0
#> 268               RR2 0.15977961 0.408496732      1
#> 269               RR1 0.23599683 0.025321138      0
#> 270               RR2 0.23599683 0.569610675      1
#> 271               RR1 0.31579579 0.120574240      0
#> 272               RR2 0.31579579 0.533875868      1
#> 273               RR1 0.25411421 0.110983810      0
#> 274               RR2 0.25411421 0.455956460      1
#> 275               RR1 0.29575597 0.105434160      0
#> 276               RR2 0.29575597 0.504056689      1
#> 277               RR1 0.19148056 0.091546770      0
#> 278               RR2 0.19148056 0.292393476      1
#> 279               RR1 0.16727937 0.063927305      0
#> 280               RR2 0.16727937 0.292457903      1
#> 281               RR1 0.19264814 0.079745942      0
#> 282               RR2 0.19264814 0.333014092      1
#> 283               RR1 0.19578262 0.086004879      0
#> 284               RR2 0.19578262 0.349308888      1
#> 285               RR1 0.44047619 0.270036376      0
#> 286               RR2 0.44047619 0.658197279      1
#> 287               RR1         NA          NA      0
#> 288               RR2         NA          NA      1
#> 289               RR1 0.27272727 0.134583333      0
#> 290               RR2 0.27272727 0.435625997      1
#> 291               RR1         NA          NA      0
#> 292               RR2         NA          NA      1
#> 293               RR1         NA          NA      0
#> 294               RR2         NA          NA      1
#> 295               RR1         NA          NA      0
#> 296               RR2         NA          NA      1
#> 297               RR1 0.33508951 0.219522914      0
#> 298               RR2 0.33508951 0.429759135      1
#> 299               RR1         NA          NA      0
#> 300               RR2         NA          NA      1
#> 301               RR1         NA          NA      0
#> 302               RR2         NA          NA      1
#> 303               RR1         NA          NA      0
#> 304               RR2         NA          NA      1
#> 305               RR1         NA          NA      0
#> 306               RR2         NA          NA      1
#> 307               RR1 0.23577236 0.055555556      0
#> 308               RR2 0.23577236 0.382183908      1
#> 309               RR1 0.31487696 0.185886752      0
#> 310               RR2 0.31487696 0.466654256      1
#> 311               RR1 0.12244898 0.005020080      0
#> 312               RR2 0.12244898 0.341390563      1
#> 313               RR1 0.19444444 0.032520325      0
#> 314               RR2 0.19444444 0.367886179      1
#> 315               RR1 0.23475610 0.126375456      0
#> 316               RR2 0.23475610 0.367946544      1
#> 317               RR1         NA          NA      0
#> 318               RR2         NA          NA      1
#> 319               RR1         NA          NA      0
#> 320               RR2         NA          NA      1
#> 321               RR1         NA          NA      0
#> 322               RR2         NA          NA      1
#> 323               RR1         NA          NA      0
#> 324               RR2         NA          NA      1
#> 325               RR1         NA          NA      0
#> 326               RR2         NA          NA      1
#> 327               RR1         NA          NA      0
#> 328               RR2         NA          NA      1
#> 329               RR1 0.22916667 0.126061321      0
#> 330               RR2 0.22916667 0.333849150      1
#> 331               RR1 0.17036491 0.132100093      0
#> 332               RR2 0.17036491 0.210171941      1
#> 333               RR1 0.26390925 0.109208892      0
#> 334               RR2 0.26390925 0.488105501      1
#> 335               RR1 0.21586783 0.088539009      0
#> 336               RR2 0.21586783 0.391241336      1
#> 337               RR1 0.25675646 0.135197412      0
#> 338               RR2 0.25675646 0.399209818      1
#> 339               RR1 0.21610340 0.105401613      0
#> 340               RR2 0.21610340 0.338671451      1
#> 341               RR1 0.21698168 0.077056285      0
#> 342               RR2 0.21698168 0.370452222      1
#> 343               RR1 0.17924641 0.066329446      0
#> 344               RR2 0.17924641 0.312492206      1
#> 345               RR1 0.24324324 0.070914473      0
#> 346               RR2 0.24324324 0.472291667      1
#> 347               RR1 0.20052320 0.065786151      0
#> 348               RR2 0.20052320 0.385141944      1
#> 349               RR1 0.51489678 0.333205756      0
#> 350               RR2 0.51489678 0.673107822      1
#> 351               RR1         NA          NA      0
#> 352               RR2         NA          NA      1
#> 353               RR1         NA          NA      0
#> 354               RR2         NA          NA      1
#> 355               RR1 0.31793370 0.041433288      0
#> 356               RR2 0.31793370 0.707088924      1
#> 357               RR1 0.15165560 0.070192195      0
#> 358               RR2 0.15165560 0.234653773      1
#> 359               RR1 0.24837542 0.141816620      0
#> 360               RR2 0.24837542 0.376208380      1
#> 361               RR1 0.29918569 0.099946196      0
#> 362               RR2 0.29918569 0.447572196      1
#> 363               RR1 0.30836320 0.124964235      0
#> 364               RR2 0.30836320 0.452954292      1
#> 365               RR1 0.39441255 0.229556384      0
#> 366               RR2 0.39441255 0.616740280      1
#> 367               RR1 0.54939602 0.313574049      0
#> 368               RR2 0.54939602 0.809617443      1
#> 369               RR1 0.37142755 0.154204634      0
#> 370               RR2 0.37142755 0.635238398      1
#> 371               RR1 0.29587590 0.134245220      0
#> 372               RR2 0.29587590 0.595481886      1
#> 373               RR1 0.41003699 0.281787839      0
#> 374               RR2 0.41003699 0.703047453      1
#> 375               RR1 0.46596035 0.166140141      0
#> 376               RR2 0.46596035 0.763244456      1
#> 377               RR1 0.46321663 0.250000000      0
#> 378               RR2 0.46321663 0.823692810      1
#> 379               RR1 0.44207273 0.225054113      0
#> 380               RR2 0.44207273 0.713852599      1
#> 381               RR1 0.59613758 0.396525204      0
#> 382               RR2 0.59613758 0.798956977      1
#> 383               RR1 0.40261842 0.216024611      0
#> 384               RR2 0.40261842 0.643352546      1
#> 385               RR1 0.37755102 0.176704546      0
#> 386               RR2 0.37755102 0.594371345      1
#> 387               RR1 0.13716008 0.045448503      0
#> 388               RR2 0.13716008 0.235494847      1
#> 389               RR1 0.27142423 0.164400765      0
#> 390               RR2 0.27142423 0.398178911      1
#> 391               RR1 0.31170915 0.192436558      0
#> 392               RR2 0.31170915 0.453849503      1
#> 393               RR1 0.38432123 0.251389541      0
#> 394               RR2 0.38432123 0.552708975      1
#> 395               RR1 0.35195589 0.203657407      0
#> 396               RR2 0.35195589 0.532774344      1
#> 397            Light1 4.47619048 2.834612861      1
#> 398            Light2 4.47619048 5.389009186      7
#> 399            Light1 4.88095238 3.330578512      1
#> 400            Light2 4.88095238 6.285714286      7
#> 401            Light1 4.81422719 3.156486052      1
#> 402            Light2 4.81422719 6.011572505      7
#> 403            Light1 5.73798627 4.606769195      1
#> 404            Light2 5.73798627 6.666666667      7
#> 405            Light1 5.24758561 4.453309805      1
#> 406            Light2 5.24758561 6.009060565      7
#> 407            Light1 5.72103152 4.712980419      1
#> 408            Light2 5.72103152 6.641096866      7
#> 409            Light1 5.53967329 4.862638019      1
#> 410            Light2 5.53967329 6.282584122      7
#> 411            Light1 5.68012021 4.984373197      1
#> 412            Light2 5.68012021 6.113997923      7
#> 413            Light1 5.55177496 4.701732750      1
#> 414            Light2 5.55177496 6.342670793      7
#> 415            Light1 5.74107476 4.956422206      1
#> 416            Light2 5.74107476 6.514042973      7
#> 417            Light1 5.40778534 4.415000000      1
#> 418            Light2 5.40778534 6.333673469      7
#> 419            Light1         NA          NA      1
#> 420            Light2         NA          NA      7
#> 421            Light1 5.97169059 4.816806220      1
#> 422            Light2 5.97169059 6.769318182      7
#> 423            Light1         NA          NA      1
#> 424            Light2         NA          NA      7
#> 425            Light1         NA          NA      1
#> 426            Light2         NA          NA      7
#> 427            Light1         NA          NA      1
#> 428            Light2         NA          NA      7
#> 429            Light1 5.42924136 5.162242188      1
#> 430            Light2 5.42924136 5.705945005      7
#> 431            Light1         NA          NA      1
#> 432            Light2         NA          NA      7
#> 433            Light1         NA          NA      1
#> 434            Light2         NA          NA      7
#> 435            Light1         NA          NA      1
#> 436            Light2         NA          NA      7
#> 437            Light1         NA          NA      1
#> 438            Light2         NA          NA      7
#> 439            Light1 4.84482759 2.804878049      1
#> 440            Light2 4.84482759 6.451293103      7
#> 441            Light1 5.21015695 4.294757727      1
#> 442            Light2 5.21015695 6.570920738      7
#> 443            Light1 4.25806452 3.036144578      1
#> 444            Light2 4.25806452 6.015282931      7
#> 445            Light1 5.00000000 3.333333333      1
#> 446            Light2 5.00000000 6.568965517      7
#> 447            Light1 5.19782836 4.242424242      1
#> 448            Light2 5.19782836 6.128085599      7
#> 449            Light1         NA          NA      1
#> 450            Light2         NA          NA      7
#> 451            Light1         NA          NA      1
#> 452            Light2         NA          NA      7
#> 453            Light1         NA          NA      1
#> 454            Light2         NA          NA      7
#> 455            Light1         NA          NA      1
#> 456            Light2         NA          NA      7
#> 457            Light1         NA          NA      1
#> 458            Light2         NA          NA      7
#> 459            Light1         NA          NA      1
#> 460            Light2         NA          NA      7
#> 461            Light1 4.43478261 3.420903674      1
#> 462            Light2 4.43478261 5.000000000      7
#> 463            Light1 4.10407738 3.762917253      1
#> 464            Light2 4.10407738 4.410746502      7
#> 465            Light1 5.00000000 4.279944444      1
#> 466            Light2 5.00000000 5.654848485      7
#> 467            Light1 5.10188239 4.477555167      1
#> 468            Light2 5.10188239 5.756967367      7
#> 469            Light1 4.92165308 4.193298199      1
#> 470            Light2 4.92165308 5.716938330      7
#> 471            Light1 4.96037224 4.286508899      1
#> 472            Light2 4.96037224 5.627944292      7
#> 473            Light1 4.84775158 4.227666344      1
#> 474            Light2 4.84775158 5.361825146      7
#> 475            Light1 4.72689642 4.050875991      1
#> 476            Light2 4.72689642 5.272623786      7
#> 477            Light1 5.42857143 4.564932127      1
#> 478            Light2 5.42857143 6.428968254      7
#> 479            Light1 5.16063561 4.617632572      1
#> 480            Light2 5.16063561 5.685655515      7
#> 481            Light1 5.20868452 4.511374738      1
#> 482            Light2 5.20868452 6.091254693      7
#> 483            Light1         NA          NA      1
#> 484            Light2         NA          NA      7
#> 485            Light1         NA          NA      1
#> 486            Light2         NA          NA      7
#> 487            Light1 6.31645570 4.781330867      1
#> 488            Light2 6.31645570 6.960317460      7
#> 489            Light1 6.24611673 5.788983695      1
#> 490            Light2 6.24611673 6.731248540      7
#> 491            Light1 5.46473182 4.872919288      1
#> 492            Light2 5.46473182 6.041276004      7
#> 493            Light1 5.51384781 5.043468328      1
#> 494            Light2 5.51384781 5.978263445      7
#> 495            Light1 5.72717348 5.105343749      1
#> 496            Light2 5.72717348 6.695662830      7
#> 497            Light1 5.63247791 4.945496634      1
#> 498            Light2 5.63247791 6.356043738      7
#> 499            Light1 5.57924641 4.529732894      1
#> 500            Light2 5.57924641 6.759379434      7
#> 501            Light1 5.59132390 4.763960580      1
#> 502            Light2 5.59132390 6.445831216      7
#> 503            Light1 5.57301132 4.706108630      1
#> 504            Light2 5.57301132 6.542760472      7
#> 505            Light1 5.33519490 4.519067178      1
#> 506            Light2 5.33519490 6.419426523      7
#> 507            Light1 5.78764018 4.719670576      1
#> 508            Light2 5.78764018 6.837309433      7
#> 509            Light1 5.33057851 4.250000000      1
#> 510            Light2 5.33057851 6.851851852      7
#> 511            Light1 5.38945911 4.521594339      1
#> 512            Light2 5.38945911 6.435125490      7
#> 513            Light1 6.29959329 5.478092167      1
#> 514            Light2 6.29959329 6.953989867      7
#> 515            Light1 5.43927084 4.601372356      1
#> 516            Light2 5.43927084 6.415611472      7
#> 517            Light1 5.13333333 3.939242424      1
#> 518            Light2 5.13333333 6.067272727      7
#> 519            Light1 4.99770247 4.082042225      1
#> 520            Light2 4.99770247 5.616844694      7
#> 521            Light1 5.97499933 5.478966669      1
#> 522            Light2 5.97499933 6.456637600      7
#> 523            Light1 6.14068826 5.557103175      1
#> 524            Light2 6.14068826 6.679142300      7
#> 525            Light1 5.69532210 4.919260083      1
#> 526            Light2 5.69532210 6.442588919      7
#> 527            Light1 6.07383693 5.309729246      1
#> 528            Light2 6.07383693 6.787213115      7
#> 529         Nitrogen1 2.60000000 1.666666667      1
#> 530         Nitrogen2 2.60000000 3.717514124      9
#> 531         Nitrogen1 2.33333333 1.235294118      1
#> 532         Nitrogen2 2.33333333 3.470588235      9
#> 533         Nitrogen1 3.27534541 1.916576087      1
#> 534         Nitrogen2 3.27534541 4.450445178      9
#> 535         Nitrogen1 3.00000000 1.818616894      1
#> 536         Nitrogen2 3.00000000 4.319588449      9
#> 537         Nitrogen1 3.55664906 2.647225559      1
#> 538         Nitrogen2 3.55664906 4.822015602      9
#> 539         Nitrogen1 3.17364476 2.463591249      1
#> 540         Nitrogen2 3.17364476 4.187575957      9
#> 541         Nitrogen1 3.36909162 2.838161820      1
#> 542         Nitrogen2 3.36909162 4.049901011      9
#> 543         Nitrogen1 3.09424094 2.727574581      1
#> 544         Nitrogen2 3.09424094 3.496544316      9
#> 545         Nitrogen1 3.34836639 2.963357772      1
#> 546         Nitrogen2 3.34836639 3.825764015      9
#> 547         Nitrogen1 3.37214190 2.998198257      1
#> 548         Nitrogen2 3.37214190 3.815733962      9
#> 549         Nitrogen1 4.84210526 3.632551020      1
#> 550         Nitrogen2 4.84210526 6.076923077      9
#> 551         Nitrogen1         NA          NA      1
#> 552         Nitrogen2         NA          NA      9
#> 553         Nitrogen1 4.00000000 2.333333333      1
#> 554         Nitrogen2 4.00000000 5.480121212      9
#> 555         Nitrogen1         NA          NA      1
#> 556         Nitrogen2         NA          NA      9
#> 557         Nitrogen1         NA          NA      1
#> 558         Nitrogen2         NA          NA      9
#> 559         Nitrogen1         NA          NA      1
#> 560         Nitrogen2         NA          NA      9
#> 561         Nitrogen1 4.57645777 3.722993078      1
#> 562         Nitrogen2 4.57645777 5.442697108      9
#> 563         Nitrogen1         NA          NA      1
#> 564         Nitrogen2         NA          NA      9
#> 565         Nitrogen1         NA          NA      1
#> 566         Nitrogen2         NA          NA      9
#> 567         Nitrogen1         NA          NA      1
#> 568         Nitrogen2         NA          NA      9
#> 569         Nitrogen1         NA          NA      1
#> 570         Nitrogen2         NA          NA      9
#> 571         Nitrogen1 3.80487805 3.000000000      1
#> 572         Nitrogen2 3.80487805 5.634146341      9
#> 573         Nitrogen1 3.92592814 2.999832215      1
#> 574         Nitrogen2 3.92592814 4.612375017      9
#> 575         Nitrogen1 3.48979592 1.845265589      1
#> 576         Nitrogen2 3.48979592 6.000000000      9
#> 577         Nitrogen1 3.70689655 3.000000000      1
#> 578         Nitrogen2 3.70689655 4.804878049      9
#> 579         Nitrogen1 3.65656566 2.422413793      1
#> 580         Nitrogen2 3.65656566 4.677020202      9
#> 581         Nitrogen1         NA          NA      1
#> 582         Nitrogen2         NA          NA      9
#> 583         Nitrogen1         NA          NA      1
#> 584         Nitrogen2         NA          NA      9
#> 585         Nitrogen1         NA          NA      1
#> 586         Nitrogen2         NA          NA      9
#> 587         Nitrogen1         NA          NA      1
#> 588         Nitrogen2         NA          NA      9
#> 589         Nitrogen1         NA          NA      1
#> 590         Nitrogen2         NA          NA      9
#> 591         Nitrogen1         NA          NA      1
#> 592         Nitrogen2         NA          NA      9
#> 593         Nitrogen1 5.59787234 4.681066760      1
#> 594         Nitrogen2 5.59787234 6.511205674      9
#> 595         Nitrogen1 5.17304277 4.693984330      1
#> 596         Nitrogen2 5.17304277 5.651099750      9
#> 597         Nitrogen1 3.77315609 2.510243180      1
#> 598         Nitrogen2 3.77315609 4.928667954      9
#> 599         Nitrogen1 3.74036934 2.522575563      1
#> 600         Nitrogen2 3.74036934 4.880149220      9
#> 601         Nitrogen1 3.76108845 2.822583736      1
#> 602         Nitrogen2 3.76108845 4.495396003      9
#> 603         Nitrogen1 3.63506648 2.657395793      1
#> 604         Nitrogen2 3.63506648 4.433827737      9
#> 605         Nitrogen1 5.32702967 4.159384488      1
#> 606         Nitrogen2 5.32702967 6.326673343      9
#> 607         Nitrogen1 5.28171681 4.027343323      1
#> 608         Nitrogen2 5.28171681 6.555161507      9
#> 609         Nitrogen1 4.12500000 2.917080251      1
#> 610         Nitrogen2 4.12500000 5.700357143      9
#> 611         Nitrogen1 4.74731704 3.354103343      1
#> 612         Nitrogen2 4.74731704 5.881711318      9
#> 613         Nitrogen1 5.29061584 4.317818042      1
#> 614         Nitrogen2 5.29061584 6.354691645      9
#> 615         Nitrogen1         NA          NA      1
#> 616         Nitrogen2         NA          NA      9
#> 617         Nitrogen1         NA          NA      1
#> 618         Nitrogen2         NA          NA      9
#> 619         Nitrogen1 5.77514249 3.580813118      1
#> 620         Nitrogen2 5.77514249 8.484126984      9
#> 621         Nitrogen1 4.91287436 4.259699191      1
#> 622         Nitrogen2 4.91287436 5.755122819      9
#> 623         Nitrogen1 3.89831390 3.111764842      1
#> 624         Nitrogen2 3.89831390 4.765609587      9
#> 625         Nitrogen1 3.88961416 1.981774674      1
#> 626         Nitrogen2 3.88961416 5.489778763      9
#> 627         Nitrogen1 3.67205651 2.530102764      1
#> 628         Nitrogen2 3.67205651 4.754402834      9
#> 629         Nitrogen1 6.42880106 5.136618282      1
#> 630         Nitrogen2 6.42880106 7.627357471      9
#> 631         Nitrogen1 6.58757267 4.574493146      1
#> 632         Nitrogen2 6.58757267 8.351996461      9
#> 633         Nitrogen1 6.44231889 4.955439761      1
#> 634         Nitrogen2 6.44231889 7.663057988      9
#> 635         Nitrogen1 6.21259213 4.623750963      1
#> 636         Nitrogen2 6.21259213 7.290282363      9
#> 637         Nitrogen1 6.11111111 4.653703704      1
#> 638         Nitrogen2 6.11111111 7.662631437      9
#> 639         Nitrogen1 6.25607942 4.465035457      1
#> 640         Nitrogen2 6.25607942 8.057582470      9
#> 641         Nitrogen1 6.07692308 4.500000000      1
#> 642         Nitrogen2 6.07692308 7.825869835      9
#> 643         Nitrogen1 5.81238274 4.493948521      1
#> 644         Nitrogen2 5.81238274 7.548410307      9
#> 645         Nitrogen1 7.63252340 6.277632200      1
#> 646         Nitrogen2 7.63252340 8.743697383      9
#> 647         Nitrogen1 6.11523199 4.695587202      1
#> 648         Nitrogen2 6.11523199 7.736712413      9
#> 649         Nitrogen1 5.06060606 3.749671053      1
#> 650         Nitrogen2 5.06060606 6.500000000      9
#> 651         Nitrogen1 4.42834220 3.677236621      1
#> 652         Nitrogen2 4.42834220 5.141886496      9
#> 653         Nitrogen1 3.17848800 2.594754508      1
#> 654         Nitrogen2 3.17848800 3.779111104      9
#> 655         Nitrogen1 3.60644656 2.866538462      1
#> 656         Nitrogen2 3.60644656 4.550025510      9
#> 657         Nitrogen1 6.13220760 4.824208323      1
#> 658         Nitrogen2 6.13220760 7.365499722      9
#> 659         Nitrogen1 5.46006681 3.594940476      1
#> 660         Nitrogen2 5.46006681 7.587203939      9
#> 661 Soil_disturbance1 3.47538337 2.054054054      1
#> 662 Soil_disturbance2 3.47538337 4.809472362      9
#> 663 Soil_disturbance1 3.84615385 2.000000000      1
#> 664 Soil_disturbance2 3.84615385 6.500000000      9
#> 665 Soil_disturbance1 3.67702251 2.110919540      1
#> 666 Soil_disturbance2 3.67702251 5.589687342      9
#> 667 Soil_disturbance1 5.33333333 3.385195853      1
#> 668 Soil_disturbance2 5.33333333 7.119332298      9
#> 669 Soil_disturbance1 4.27289967 2.976882142      1
#> 670 Soil_disturbance2 4.27289967 5.555851265      9
#> 671 Soil_disturbance1 5.14511960 3.409615385      1
#> 672 Soil_disturbance2 5.14511960 6.823119873      9
#> 673 Soil_disturbance1 4.03148101 2.972561873      1
#> 674 Soil_disturbance2 4.03148101 4.994144144      9
#> 675 Soil_disturbance1 5.06051535 3.947284623      1
#> 676 Soil_disturbance2 5.06051535 5.910220365      9
#> 677 Soil_disturbance1 4.10736121 2.758178748      1
#> 678 Soil_disturbance2 4.10736121 5.479318736      9
#> 679 Soil_disturbance1 4.32178477 3.155511400      1
#> 680 Soil_disturbance2 4.32178477 5.578609711      9
#> 681 Soil_disturbance1 4.42857143 2.682520325      1
#> 682 Soil_disturbance2 4.42857143 6.470860566      9
#> 683 Soil_disturbance1         NA          NA      1
#> 684 Soil_disturbance2         NA          NA      9
#> 685 Soil_disturbance1 3.90000000 2.499744898      1
#> 686 Soil_disturbance2 3.90000000 5.483189655      9
#> 687 Soil_disturbance1         NA          NA      1
#> 688 Soil_disturbance2         NA          NA      9
#> 689 Soil_disturbance1         NA          NA      1
#> 690 Soil_disturbance2         NA          NA      9
#> 691 Soil_disturbance1         NA          NA      1
#> 692 Soil_disturbance2         NA          NA      9
#> 693 Soil_disturbance1 3.25970322 2.486205237      1
#> 694 Soil_disturbance2 3.25970322 4.238747901      9
#> 695 Soil_disturbance1         NA          NA      1
#> 696 Soil_disturbance2         NA          NA      9
#> 697 Soil_disturbance1         NA          NA      1
#> 698 Soil_disturbance2         NA          NA      9
#> 699 Soil_disturbance1         NA          NA      1
#> 700 Soil_disturbance2         NA          NA      9
#> 701 Soil_disturbance1         NA          NA      1
#> 702 Soil_disturbance2         NA          NA      9
#> 703 Soil_disturbance1 3.19512195 1.780487805      1
#> 704 Soil_disturbance2 3.19512195 5.439024390      9
#> 705 Soil_disturbance1 4.50167785 2.744836116      1
#> 706 Soil_disturbance2 4.50167785 6.289809582      9
#> 707 Soil_disturbance1 4.00000000 2.333163265      1
#> 708 Soil_disturbance2 4.00000000 5.757575758      9
#> 709 Soil_disturbance1 3.43103448 2.568965517      1
#> 710 Soil_disturbance2 3.43103448 5.439024390      9
#> 711 Soil_disturbance1 4.06896552 2.585858586      1
#> 712 Soil_disturbance2 4.06896552 5.711589636      9
#> 713 Soil_disturbance1         NA          NA      1
#> 714 Soil_disturbance2         NA          NA      9
#> 715 Soil_disturbance1         NA          NA      1
#> 716 Soil_disturbance2         NA          NA      9
#> 717 Soil_disturbance1         NA          NA      1
#> 718 Soil_disturbance2         NA          NA      9
#> 719 Soil_disturbance1         NA          NA      1
#> 720 Soil_disturbance2         NA          NA      9
#> 721 Soil_disturbance1         NA          NA      1
#> 722 Soil_disturbance2         NA          NA      9
#> 723 Soil_disturbance1         NA          NA      1
#> 724 Soil_disturbance2         NA          NA      9
#> 725 Soil_disturbance1 2.34071085 1.671994536      1
#> 726 Soil_disturbance2 2.34071085 3.281270032      9
#> 727 Soil_disturbance1 2.17706434 1.896863125      1
#> 728 Soil_disturbance2 2.17706434 2.625147007      9
#> 729 Soil_disturbance1 3.40212766 2.380928571      1
#> 730 Soil_disturbance2 3.40212766 4.625284091      9
#> 731 Soil_disturbance1 3.25373134 2.302267442      1
#> 732 Soil_disturbance2 3.25373134 4.430699260      9
#> 733 Soil_disturbance1 3.77353148 2.808479219      1
#> 734 Soil_disturbance2 3.77353148 4.921041929      9
#> 735 Soil_disturbance1 3.97872470 2.974880818      1
#> 736 Soil_disturbance2 3.97872470 5.140814731      9
#> 737 Soil_disturbance1 3.07913333 2.184894606      1
#> 738 Soil_disturbance2 3.07913333 4.308136426      9
#> 739 Soil_disturbance1 2.89417781 2.195281440      1
#> 740 Soil_disturbance2 2.89417781 4.023431994      9
#> 741 Soil_disturbance1 3.90022624 2.222101449      1
#> 742 Soil_disturbance2 3.90022624 6.250000000      9
#> 743 Soil_disturbance1 2.49869452 1.831487956      1
#> 744 Soil_disturbance2 2.49869452 4.353716327      9
#> 745 Soil_disturbance1 5.17056594 3.237734394      1
#> 746 Soil_disturbance2 5.17056594 6.784789528      9
#> 747 Soil_disturbance1         NA          NA      1
#> 748 Soil_disturbance2         NA          NA      9
#> 749 Soil_disturbance1         NA          NA      1
#> 750 Soil_disturbance2         NA          NA      9
#> 751 Soil_disturbance1 4.50802811 2.160844448      1
#> 752 Soil_disturbance2 4.50802811 8.460971152      9
#> 753 Soil_disturbance1 3.72244571 2.975681714      1
#> 754 Soil_disturbance2 3.72244571 4.647642389      9
#> 755 Soil_disturbance1 3.34035884 2.652346217      1
#> 756 Soil_disturbance2 3.34035884 4.316478019      9
#> 757 Soil_disturbance1 3.35107263 2.203449197      1
#> 758 Soil_disturbance2 3.35107263 5.322170608      9
#> 759 Soil_disturbance1 3.11775237 2.168740064      1
#> 760 Soil_disturbance2 3.11775237 5.087087078      9
#> 761 Soil_disturbance1 4.72934036 2.701515793      1
#> 762 Soil_disturbance2 4.72934036 7.042813695      9
#> 763 Soil_disturbance1 6.34526243 2.832766500      1
#> 764 Soil_disturbance2 6.34526243 8.671941557      9
#> 765 Soil_disturbance1 4.50637343 2.390913651      1
#> 766 Soil_disturbance2 4.50637343 7.018260088      9
#> 767 Soil_disturbance1 3.60546272 2.036043967      1
#> 768 Soil_disturbance2 3.60546272 6.500131926      9
#> 769 Soil_disturbance1 4.54391757 2.273312042      1
#> 770 Soil_disturbance2 4.54391757 7.594822399      9
#> 771 Soil_disturbance1 5.62618508 2.504946445      1
#> 772 Soil_disturbance2 5.62618508 8.421311276      9
#> 773 Soil_disturbance1 5.85714286 2.148015873      1
#> 774 Soil_disturbance2 5.85714286 8.412131249      9
#> 775 Soil_disturbance1 5.29846814 2.434489967      1
#> 776 Soil_disturbance2 5.29846814 7.661146834      9
#> 777 Soil_disturbance1 7.11697034 5.038970242      1
#> 778 Soil_disturbance2 7.11697034 8.825881321      9
#> 779 Soil_disturbance1 4.44700608 2.262828947      1
#> 780 Soil_disturbance2 4.44700608 7.028945621      9
#> 781 Soil_disturbance1 4.63525499 2.710070850      1
#> 782 Soil_disturbance2 4.63525499 6.266730769      9
#> 783 Soil_disturbance1 2.94078836 2.197448402      1
#> 784 Soil_disturbance2 2.94078836 3.848218137      9
#> 785 Soil_disturbance1 4.39600648 3.306644992      1
#> 786 Soil_disturbance2 4.39600648 5.545852412      9
#> 787 Soil_disturbance1 4.40371630 3.049984568      1
#> 788 Soil_disturbance2 4.40371630 5.870871385      9
#> 789 Soil_disturbance1 4.54238010 2.874646256      1
#> 790 Soil_disturbance2 4.54238010 6.352716530      9
#> 791 Soil_disturbance1 4.56904762 2.462940379      1
#> 792 Soil_disturbance2 4.56904762 7.142718529      9
#>       N1               hoved                grunn    
#>  Length:792         Length:792         T11-C-1 : 12  
#>  Class :character   Class :character   T11-C-2 : 12  
#>  Mode  :character   Mode  :character   T12-C-1 : 12  
#>                                        T12-C-2 : 12  
#>                                        T13-C-1 : 12  
#>                                        T13-C-10: 12  
#>                                        (Other) :720  
#>     county             region                 Ind     
#>  Length:792         Length:792         CC1      : 66  
#>  Class :character   Class :character   CC2      : 66  
#>  Mode  :character   Mode  :character   Light1   : 66  
#>                                        Light2   : 66  
#>                                        Nitrogen1: 66  
#>                                        Nitrogen2: 66  
#>                                        (Other)  :396  
#>        Rv                Gv             maxmin     
#>  Min.   :0.07599   Min.   :0.0000   Min.   :0.000  
#>  1st Qu.:0.31409   1st Qu.:0.3156   1st Qu.:0.750  
#>  Median :1.42385   Median :1.1076   Median :1.000  
#>  Mean   :2.50244   Mean   :2.5277   Mean   :2.583  
#>  3rd Qu.:4.76404   3rd Qu.:4.6944   3rd Qu.:2.500  
#>  Max.   :7.63252   Max.   :8.8259   Max.   :9.000  
#>  NA's   :192       NA's   :192
head(natopen.ref.cov.val)
#>        N1 hoved  grunn county region Ind        Rv
#> 1 natopen    NA T2-C-1    all    all CC1 0.2187255
#> 2 natopen    NA T2-C-1    all    all CC2 0.2187255
#> 3 natopen    NA T2-C-2    all    all CC1 0.1967109
#> 4 natopen    NA T2-C-2    all    all CC2 0.1967109
#> 5 natopen    NA T2-C-3    all    all CC1 0.1714199
#> 6 natopen    NA T2-C-3    all    all CC2 0.1714199
#>           Gv maxmin
#> 1 0.08766832      0
#> 2 0.38888889      1
#> 3 0.05382353      0
#> 4 0.28434874      1
#> 5 0.03753882      0
#> 6 0.39205879      1

Once test data (ANO, GRUK) and the scaling values from the reference data are in place, we can calculate community-weighted means (CWM) of the selected indicators for the ANO and GRUK community data and scale them against the scaling values from the reference distribution. Note that we scale each ANO/GRUK plot’s CWM against either the lower threshold value and the min value OR the upper threshold value and the max value based on whether the CWM is smaller or higher than the reference value. Since the scaled values for both sides range between 0 and 1, we generate separate lower and upper condition indicators for each functional plant indicator. An ANO/GRUK plot can only have a scaled value in either the lower or the upper indicator (the other one will be ‘NA’), except for the unlikely event that the CWM exactly matches the reference value, in which case both lower and upper indicator will receive a scaled indicator value of 1.

Here is the scaling function


#### scaled values ####
r.s <- 1    # reference value
l.s <- 0.6  # limit value
a.s <- 0    # abscence of indicator, or indicator at maximum

#### function for calculating scaled values for measured value ####

## scaling function including truncation
scal <- function() {
  # place to hold the result
   x <- numeric()
  if (maxmin < ref) {
    # values >= the reference value equal 1
    if (val >= ref) {x <- 1}
    # values < the reference value and >= the limit value can be deducted from the linear relationship between these two
    if (val < ref & val >= lim) {x <- (l.s + (val-lim) * ( (r.s-l.s) / (ref-lim) ) )}
    # values < the limit value and > maxmin can be deducted from the linear relationship between these two
    if (val < lim & val > maxmin) {x <- (a.s + (val-maxmin) * ( (l.s-a.s) / (lim-maxmin) ) )}
    # value equals or lower than maxmin
    if (val <= maxmin) {x <-0}
  } else {
    # values <= the reference value equal 1
    if (val <= ref) {x <- 1}
    # values > the reference value and <= the limit value can be deducted from the linear relationship between these two
    if (val > ref & val <= lim) {x <- ( r.s - ( (r.s - l.s) * (val - ref) / (lim - ref) ) )}
    # values > the limit value and < maxmin can be deducted from the linear relationship between these two
    if (val > lim) {x <- ( l.s - (l.s * (val - lim) / (maxmin - lim) ) )}
    # value equals or larger than maxmin
    if (val >= maxmin) {x <-0}
  }
  return(x)
  
}

We then can prepare a list of data frames to hold the results and perform the scaling according to the principles described in NINA report 1967 (Töpper and Jakobsson 2021) This is done separately for ANO and ASO. First for ANO:


#### calculating scaled and non-truncated values for the indicators based on the dataset ####
for (i in 1:nrow(ANO.natopen) ) {  #
  tryCatch({
    print(i)
    print(paste(ANO.natopen$ano_flate_id[i]))
    print(paste(ANO.natopen$ano_punkt_id[i]))
#    ANO.natopen$Hovedoekosystem_sirkel[i]
#    ANO.natopen$Hovedoekosystem_rute[i]

    # if the ANO.hovedtype exists in the reference
    if (ANO.natopen$hovedtype_rute[i] %in% gsub("-","",unique(substr(natopen.ref.cov.val$grunn,1,3))) ) {
      
      # if there is any species present in current ANO point  
      if ( length(ANO.sp.ind[ANO.sp.ind$ParentGlobalID==as.character(ANO.natopen$GlobalID[i]),'Species']) > 0 ) {
        

        # Grime's C
        
        dat <- ANO.sp.ind[ANO.sp.ind$ParentGlobalID==as.character(ANO.natopen$GlobalID[i]),c('art_dekning','CC')]
        results.natopen.ANO[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$CC),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'CC'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
          } else {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
          }
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
          # coercing x into results.natopen.ANO dataframe
          results.natopen.ANO[['scaled']][i,'CC1'] <- scal() 
          results.natopen.ANO[['non-truncated']][i,'CC1'] <- scal.2() 
          results.natopen.ANO[['original']][i,'CC1'] <- val 
          
          # upper part of distribution
          if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
          } else {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
          }          
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
          # coercing x into results.natopen.ANO dataframe
          results.natopen.ANO[['scaled']][i,'CC2'] <- scal() 
          results.natopen.ANO[['non-truncated']][i,'CC2'] <- scal.2() 
          results.natopen.ANO[['original']][i,'CC2'] <- val
        }
          
        
        # Grime's S
        dat <- ANO.sp.ind[ANO.sp.ind$ParentGlobalID==as.character(ANO.natopen$GlobalID[i]),c('art_dekning','SS')]
        results.natopen.ANO[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$SS),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'SS'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
          } else {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
          }          
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
          # coercing x into results.natopen.ANO dataframe
          results.natopen.ANO[['scaled']][i,'SS1'] <- scal() 
          results.natopen.ANO[['non-truncated']][i,'SS1'] <- scal.2() 
          results.natopen.ANO[['original']][i,'SS1'] <- val 
          
          # upper part of distribution
          if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
          } else {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
          }          
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
          # coercing x into results.natopen.ANO dataframe
          results.natopen.ANO[['scaled']][i,'SS2'] <- scal() 
          results.natopen.ANO[['non-truncated']][i,'SS2'] <- scal.2() 
          results.natopen.ANO[['original']][i,'SS2'] <- val
        }
        
        
        # Grime's R
        dat <- ANO.sp.ind[ANO.sp.ind$ParentGlobalID==as.character(ANO.natopen$GlobalID[i]),c('art_dekning','RR')]
        results.natopen.ANO[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$RR),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'RR'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
          } else {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
          }          
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
          # coercing x into results.natopen.ANO dataframe
          results.natopen.ANO[['scaled']][i,'RR1'] <- scal() 
          results.natopen.ANO[['non-truncated']][i,'RR1'] <- scal.2() 
          results.natopen.ANO[['original']][i,'RR1'] <- val 
          
          # upper part of distribution
          if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
          } else {
            ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
            lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
          }          
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
          # coercing x into results.natopen.ANO dataframe
          results.natopen.ANO[['scaled']][i,'RR2'] <- scal() 
          results.natopen.ANO[['non-truncated']][i,'RR2'] <- scal.2() 
          results.natopen.ANO[['original']][i,'RR2'] <- val
        }
        
        
          # Light
          dat <- ANO.sp.ind[ANO.sp.ind$ParentGlobalID==as.character(ANO.natopen$GlobalID[i]),c('art_dekning','Light')]
          results.natopen.ANO[['original']][i,'richness'] <- nrow(dat)
          dat <- dat[!is.na(dat$Light),]
          
          if ( nrow(dat)>0 ) {
            
            val <- sum(dat[,'art_dekning'] * dat[,'Light'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
            # lower part of distribution
            if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
            } else {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
            }            
            maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
            # coercing x into results.natopen.ANO dataframe
            results.natopen.ANO[['scaled']][i,'Light1'] <- scal() 
            results.natopen.ANO[['non-truncated']][i,'Light1'] <- scal.2() 
            results.natopen.ANO[['original']][i,'Light1'] <- val 
            
            # upper part of distribution
            if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
            } else {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
            }            
            maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
            # coercing x into results.natopen.ANO dataframe
            results.natopen.ANO[['scaled']][i,'Light2'] <- scal() 
            results.natopen.ANO[['non-truncated']][i,'Light2'] <- scal.2() 
            results.natopen.ANO[['original']][i,'Light2'] <- val
          }
          
          
         
          
          # Nitrogen
          dat <- ANO.sp.ind[ANO.sp.ind$ParentGlobalID==as.character(ANO.natopen$GlobalID[i]),c('art_dekning','Nitrogen')]
          results.natopen.ANO[['original']][i,'richness'] <- nrow(dat)
          dat <- dat[!is.na(dat$Nitrogen),]
          
          if ( nrow(dat)>0 ) {
            
            val <- sum(dat[,'art_dekning'] * dat[,'Nitrogen'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
            # lower part of distribution
            if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
            } else {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
            }            
            maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
            # coercing x into results.natopen.ANO dataframe
            results.natopen.ANO[['scaled']][i,'Nitrogen1'] <- scal() 
            results.natopen.ANO[['non-truncated']][i,'Nitrogen1'] <- scal.2() 
            results.natopen.ANO[['original']][i,'Nitrogen1'] <- val 
            
            # upper part of distribution
            if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
            } else {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
            }            
            maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
            # coercing x into results.natopen.ANO dataframe
            results.natopen.ANO[['scaled']][i,'Nitrogen2'] <- scal() 
            results.natopen.ANO[['non-truncated']][i,'Nitrogen2'] <- scal.2() 
            results.natopen.ANO[['original']][i,'Nitrogen2'] <- val
          }
          
          

          
          
          # Soil_disturbance
          dat <- ANO.sp.ind[ANO.sp.ind$ParentGlobalID==as.character(ANO.natopen$GlobalID[i]),c('art_dekning','Soil_disturbance')]
          results.natopen.ANO[['original']][i,'richness'] <- nrow(dat)
          dat <- dat[!is.na(dat$Soil_disturbance),]
          
          if ( nrow(dat)>0 ) {
            
            val <- sum(dat[,'art_dekning'] * dat[,'Soil_disturbance'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
            # lower part of distribution
            if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
            } else {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
            }           
            maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance1' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
            # coercing x into results.natopen.ANO dataframe
            results.natopen.ANO[['scaled']][i,'Soil_disturbance1'] <- scal() 
            results.natopen.ANO[['non-truncated']][i,'Soil_disturbance1'] <- scal.2() 
            results.natopen.ANO[['original']][i,'Soil_disturbance1'] <- val 
            
            # upper part of distribution
            if( ANO.natopen$kartleggingsenhet_1m2[i] %in% c("T2-C-7","T2-C-8") ) {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),"_BN",sep=""),'Gv']
            } else {
              ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Rv']
              lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'Gv']
            }
            maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance2' & natopen.ref.cov.val$grunn==as.character(results.natopen.ANO[['original']][i,"kartleggingsenhet_1m2"]),'maxmin']
            # coercing x into results.natopen.ANO dataframe
            results.natopen.ANO[['scaled']][i,'Soil_disturbance2'] <- scal() 
            results.natopen.ANO[['non-truncated']][i,'Soil_disturbance2'] <- scal.2() 
            results.natopen.ANO[['original']][i,'Soil_disturbance2'] <- val
          }
          
          
          
        }
      }
      

    
  }, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
}

# for using both sides of the plant indicators
results.natopen.ANO[['2-sided']] <- results.natopen.ANO[['non-truncated']]

# remove values >1 for 2-sided indicators
results.natopen.ANO[['2-sided']]$CC1[results.natopen.ANO[['2-sided']]$CC1>1] <- NA
results.natopen.ANO[['2-sided']]$CC2[results.natopen.ANO[['2-sided']]$CC2>1] <- NA

results.natopen.ANO[['2-sided']]$SS1[results.natopen.ANO[['2-sided']]$SS1>1] <- NA
results.natopen.ANO[['2-sided']]$SS2[results.natopen.ANO[['2-sided']]$SS2>1] <- NA

results.natopen.ANO[['2-sided']]$RR1[results.natopen.ANO[['2-sided']]$RR1>1] <- NA
results.natopen.ANO[['2-sided']]$RR2[results.natopen.ANO[['2-sided']]$RR2>1] <- NA

results.natopen.ANO[['2-sided']]$Light1[results.natopen.ANO[['2-sided']]$Light1>1] <- NA
results.natopen.ANO[['2-sided']]$Light2[results.natopen.ANO[['2-sided']]$Light2>1] <- NA

results.natopen.ANO[['2-sided']]$Nitrogen1[results.natopen.ANO[['2-sided']]$Nitrogen1>1] <- NA
results.natopen.ANO[['2-sided']]$Nitrogen2[results.natopen.ANO[['2-sided']]$Nitrogen2>1] <- NA

results.natopen.ANO[['2-sided']]$Soil_disturbance1[results.natopen.ANO[['2-sided']]$Soil_disturbance1>1] <- NA
results.natopen.ANO[['2-sided']]$Soil_disturbance2[results.natopen.ANO[['2-sided']]$Soil_disturbance2>1] <- NA

and for GRUK:


#### calculating scaled and non-truncated values for the indicators based on the dataset ####
for (i in 1:nrow(GRUK.natopen) ) {  #
  tryCatch({
    print(i)
    print(paste(GRUK.natopen$Flate_ID[i]))
    print(paste(GRUK.natopen$uPunkt_ID[i]))
    #    GRUK.natopen$Hovedoekosystem_sirkel[i]
    #    GRUK.natopen$Hovedoekosystem_rute[i]
    
    
    
    # if the GRUK.hovedtype exists in the reference
#    if (GRUK.natopen$hovedtype_rute[i] %in% unique(substr(natopen.ref.cov.val$grunn,1,2)) ) {
      
      # if there is any species present in current GRUK point  
      if ( length(GRUK.species.ind[GRUK.species.ind$ParentGlobalID==as.character(GRUK.natopen$GlobalID[i]),'Species']) > 0 ) {
        
        
        # Grime's C
        
        dat <- GRUK.species.ind[GRUK.species.ind$ParentGlobalID==as.character(GRUK.natopen$GlobalID[i]),c('art_dekning','CC')]
        results.natopen.GRUK[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$CC),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'CC'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC1' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'CC1'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'CC1'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'CC1'] <- val 
          
          # upper part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='CC2' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'CC2'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'CC2'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'CC2'] <- val

        }
        
        
        # Grime's S
        dat <- GRUK.species.ind[GRUK.species.ind$ParentGlobalID==as.character(GRUK.natopen$GlobalID[i]),c('art_dekning','SS')]
        results.natopen.GRUK[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$SS),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'SS'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS1' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'SS1'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'SS1'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'SS1'] <- val
          
          # upper part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='SS2' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'SS2'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'SS2'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'SS2'] <- val
          
        }
        
        
        # Grime's R
        dat <- GRUK.species.ind[GRUK.species.ind$ParentGlobalID==as.character(GRUK.natopen$GlobalID[i]),c('art_dekning','RR')]
        results.natopen.GRUK[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$RR),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'RR'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR1' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'RR1'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'RR1'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'RR1'] <- val
          
          # upper part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='RR2' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'RR2'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'RR2'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'RR2'] <- val
          
        }
        
        
        # Light
        dat <- GRUK.species.ind[GRUK.species.ind$ParentGlobalID==as.character(GRUK.natopen$GlobalID[i]),c('art_dekning','Light')]
        results.natopen.GRUK[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$Light),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'Light'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light1' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'Light1'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'Light1'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'Light1'] <- val
          
          # upper part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Light2' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'Light2'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'Light2'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'Light2'] <- val
          

        }
        
        
        
        
        # Nitrogen
        dat <- GRUK.species.ind[GRUK.species.ind$ParentGlobalID==as.character(GRUK.natopen$GlobalID[i]),c('art_dekning','Nitrogen')]
        results.natopen.GRUK[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$Nitrogen),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'Nitrogen'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen1' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'Nitrogen1'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'Nitrogen1'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'Nitrogen1'] <- val
          

          # upper part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Nitrogen2' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'Nitrogen2'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'Nitrogen2'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'Nitrogen2'] <- val
          
        }
        
        
        
        
        
        
        # Soil_disturbance
        dat <- GRUK.species.ind[GRUK.species.ind$ParentGlobalID==as.character(GRUK.natopen$GlobalID[i]),c('art_dekning','Soil_disturbance')]
        results.natopen.GRUK[['original']][i,'richness'] <- nrow(dat)
        dat <- dat[!is.na(dat$Soil_disturbance),]
        
        if ( nrow(dat)>0 ) {
          
          val <- sum(dat[,'art_dekning'] * dat[,'Soil_disturbance'],na.rm=T) / sum(dat[,'art_dekning'],na.rm=T)
          # lower part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance1' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance1' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'Soil_disturbance1'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'Soil_disturbance1'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'Soil_disturbance1'] <- val
          

          # upper part of distribution
          ref <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Rv']
          lim <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance2' & natopen.ref.cov.val$grunn==paste(as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),"_BN",sep=""),'Gv']
          maxmin <- natopen.ref.cov.val[natopen.ref.cov.val$Ind=='Soil_disturbance2' & natopen.ref.cov.val$grunn==as.character(results.natopen.GRUK[['original']][i,"Kartleggingsenhet"]),'maxmin']
          # coercing x into results.natopen.GRUK dataframe
          results.natopen.GRUK[['scaled']][i,'Soil_disturbance2'] <- scal() 
          results.natopen.GRUK[['non-truncated']][i,'Soil_disturbance2'] <- scal.2() 
          results.natopen.GRUK[['original']][i,'Soil_disturbance2'] <- val
          
        }
        
        
        
      }
#    }
    
    
    
  }, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
}

# for using both sides of the plant indicators
results.natopen.GRUK[['2-sided']] <- results.natopen.GRUK[['non-truncated']]

# remove values >1 for 2-sided indicators
results.natopen.GRUK[['2-sided']]$CC1[results.natopen.GRUK[['2-sided']]$CC1>1] <- NA
results.natopen.GRUK[['2-sided']]$CC2[results.natopen.GRUK[['2-sided']]$CC2>1] <- NA

results.natopen.GRUK[['2-sided']]$SS1[results.natopen.GRUK[['2-sided']]$SS1>1] <- NA
results.natopen.GRUK[['2-sided']]$SS2[results.natopen.GRUK[['2-sided']]$SS2>1] <- NA

results.natopen.GRUK[['2-sided']]$RR1[results.natopen.GRUK[['2-sided']]$RR1>1] <- NA
results.natopen.GRUK[['2-sided']]$RR2[results.natopen.GRUK[['2-sided']]$RR2>1] <- NA

results.natopen.GRUK[['2-sided']]$Light1[results.natopen.GRUK[['2-sided']]$Light1>1] <- NA
results.natopen.GRUK[['2-sided']]$Light2[results.natopen.GRUK[['2-sided']]$Light2>1] <- NA

results.natopen.GRUK[['2-sided']]$Nitrogen1[results.natopen.GRUK[['2-sided']]$Nitrogen1>1] <- NA
results.natopen.GRUK[['2-sided']]$Nitrogen2[results.natopen.GRUK[['2-sided']]$Nitrogen2>1] <- NA

results.natopen.GRUK[['2-sided']]$Soil_disturbance1[results.natopen.GRUK[['2-sided']]$Soil_disturbance1>1] <- NA
results.natopen.GRUK[['2-sided']]$Soil_disturbance2[results.natopen.GRUK[['2-sided']]$Soil_disturbance2>1] <- NA
head(results.natopen.ANO[['2-sided']])
#>                                 GlobalID
#> 1 {A24A765B-A1B4-4AF7-A1B9-A4A3F61F6295}
#> 2 {67BECF0E-AA0C-4413-8D9D-34F1662D4AC9}
#> 3 {628B2427-2D0D-4173-83D5-742F63AA2861}
#> 4 {F30B90BB-CF0C-4AE2-BAB1-5D74497C8083}
#> 5 {353E09DF-4A2C-4B48-AB34-9E03935E9CAB}
#> 6 {006B784E-9024-40E7-8084-498884D4F81B}
#>      registeringsdato klokkeslett_start ano_flate_id
#> 1 2019-08-16 11:59:59             13:42      ANO0003
#> 2 2019-09-02 11:59:59             16:49      ANO0006
#> 3 2019-08-14 11:59:59             16:02      ANO0034
#> 4 2019-09-10 11:59:59             14:41      ANO0066
#> 5 2019-09-10 11:59:59             14:36      ANO0066
#> 6 2019-08-12 11:59:59             18:21      ANO0083
#>   ano_punkt_id         ssb_id program
#> 1   ANO0003_46 20940006559500     ANO
#> 2   ANO0006_62 23435007081000     ANO
#> 3   ANO0034_66 21680006567500     ANO
#> 4   ANO0066_35 22925006647000     ANO
#> 5   ANO0066_26 22925006647000     ANO
#> 6   ANO0083_31 21820006614000     ANO
#>                                                                   instruks
#> 1 https://nedlasting.miljodirektoratet.no/naturovervaking/ano_instruks.pdf
#> 2 https://nedlasting.miljodirektoratet.no/naturovervaking/ano_instruks.pdf
#> 3 https://nedlasting.miljodirektoratet.no/naturovervaking/ano_instruks.pdf
#> 4 https://nedlasting.miljodirektoratet.no/naturovervaking/ano_instruks.pdf
#> 5 https://nedlasting.miljodirektoratet.no/naturovervaking/ano_instruks.pdf
#> 6 https://nedlasting.miljodirektoratet.no/naturovervaking/ano_instruks.pdf
#>    aar      dataansvarlig_mdir                   dataeier
#> 1 2019 Ole Einar Butli Hårstad Miljødirektoratet, VAL/VMK
#> 2 2019 Ole Einar Butli Hårstad Miljødirektoratet, VAL/VMK
#> 3 2019 Ole Einar Butli Hårstad Miljødirektoratet, VAL/VMK
#> 4 2019 Ole Einar Butli Hårstad Miljødirektoratet, VAL/VMK
#> 5 2019 Ole Einar Butli Hårstad Miljødirektoratet, VAL/VMK
#> 6 2019 Ole Einar Butli Hårstad Miljødirektoratet, VAL/VMK
#>                   vaer hovedoekosystem_punkt
#> 1                  sol         naturlig_apne
#> 2                  sol         naturlig_apne
#> 3            overskyet         naturlig_apne
#> 4            overskyet                  skog
#> 5 overskyet,vindstille                  skog
#> 6               nedbør         naturlig_apne
#>   andel_hovedoekosystem_punkt utilgjengelig_punkt
#> 1                          NA                <NA>
#> 2                          NA                <NA>
#> 3                          NA                <NA>
#> 4                          NA                <NA>
#> 5                          NA                <NA>
#> 6                          NA                <NA>
#>   utilgjengelig_begrunnelse  gps noeyaktighet
#> 1                      <NA> <NA>         <NA>
#> 2                      <NA> <NA>         <NA>
#> 3                      <NA> <NA>         <NA>
#> 4                      <NA> <NA>         <NA>
#> 5                      <NA> <NA>         <NA>
#> 6                      <NA> <NA>         <NA>
#>   kommentar_posisjon klokkeslett_karplanter_start
#> 1               <NA>                         <NA>
#> 2               <NA>                         <NA>
#> 3               <NA>                         <NA>
#> 4               <NA>                         <NA>
#> 5               <NA>                         <NA>
#> 6               <NA>                         <NA>
#>   art_alle_registrert karplanter_dekning
#> 1                <NA>                 NA
#> 2                <NA>               39.0
#> 3                <NA>               10.0
#> 4                <NA>               36.0
#> 5                <NA>               74.0
#> 6                <NA>               87.1
#>   klokkeslett_karplanter_slutt karplanter_feltsjikt
#> 1                         <NA>                   NA
#> 2                         <NA>                   NA
#> 3                         <NA>                   NA
#> 4                         <NA>                   NA
#> 5                         <NA>                   NA
#> 6                         <NA>                   NA
#>   moser_dekning torvmoser_dekning lav_dekning stroe_dekning
#> 1            10                 0          30            95
#> 2             3                 0          15            80
#> 3            45                 0           0            65
#> 4            15                 0          45             8
#> 5            30                 0           0            70
#> 6            20                 0           1             6
#>   jord_grus_stein_berg_dekning stubber_kvister_dekning
#> 1                           NA                      NA
#> 2                            5                      NA
#> 3                           NA                      NA
#> 4                            8                      NA
#> 5                            0                      NA
#> 6                           NA                      NA
#>   alger_fjell_dekning
#> 1                  NA
#> 2                  NA
#> 3                  NA
#> 4                  NA
#> 5                  NA
#> 6                  NA
#>                                                              kommentar_ruteanalyse
#> 1 Punktet ligger midt i en tørka/død røsslyng flekk. 90% av strøet er død røsslyng
#> 2                                                                             <NA>
#> 3                               en del gammel lyng som er bare grønn helt i toppen
#> 4                                           Ligger i bratt kløft, flyttet 40 m øst
#> 5                                                                             <NA>
#> 6                                                                             <NA>
#>   fastmerker kommentar_fastmerker kartleggingsenhet_1m2
#> 1       <NA>                 <NA>                T2-C-1
#> 2       <NA>                 <NA>                T2-C-1
#> 3       <NA>                 <NA>                T2-C-1
#> 4       <NA>                 <NA>                T2-C-1
#> 5       <NA>                 <NA>                T2-C-1
#> 6       <NA>                 <NA>                T2-C-1
#>          hovedtype_1m2                  ke_beskrivelse_1m2
#> 1 Åpen grunnlendt mark åpen kalkfattig grunnlendt lyngmark
#> 2 Åpen grunnlendt mark åpen kalkfattig grunnlendt lyngmark
#> 3 Åpen grunnlendt mark åpen kalkfattig grunnlendt lyngmark
#> 4 Åpen grunnlendt mark åpen kalkfattig grunnlendt lyngmark
#> 5 Åpen grunnlendt mark åpen kalkfattig grunnlendt lyngmark
#> 6 Åpen grunnlendt mark åpen kalkfattig grunnlendt lyngmark
#>   kartleggingsenhet_250m2 hovedtype_250m2
#> 1                    <NA>            <NA>
#> 2                    <NA>            <NA>
#> 3                    <NA>            <NA>
#> 4                    <NA>            <NA>
#> 5                    <NA>            <NA>
#> 6                    <NA>            <NA>
#>   ke_beskrivelse_250m2 andel_kartleggingsenhet_250m2
#> 1                 <NA>                            NA
#> 2                 <NA>                            NA
#> 3                 <NA>                            NA
#> 4                 <NA>                            NA
#> 5                 <NA>                            NA
#> 6                 <NA>                            NA
#>   groeftingsintensitet bruksintensitet beitetrykk
#> 1                   NA              NA         NA
#> 2                   NA              NA         NA
#> 3                   NA              NA         NA
#> 4                   NA              NA          1
#> 5                   NA              NA          1
#> 6                   NA              NA         NA
#>   slatteintensitet tungekjoretoy slitasje forekomst_ntyp
#> 1               NA             0       NA            nei
#> 2               NA             0       NA            nei
#> 3               NA             0       NA            nei
#> 4               NA             0       NA            nei
#> 5               NA             0       NA            nei
#> 6               NA             0       NA            nei
#>   ntyp
#> 1 <NA>
#> 2 <NA>
#> 3 <NA>
#> 4 <NA>
#> 5 <NA>
#> 6 <NA>
#>                                                     kommentar_naturtyperegistering
#> 1 Litt t4c5 i østre del. Området ligger i en helning med mye død/inntørka røsslyng
#> 2                                                                             <NA>
#> 3                ca. 50% er T1C2 nakent berg, men plottet har litt lyngvegetasjon 
#> 4                                                                         Lavrabbe
#> 5                                                                             <NA>
#> 6                                      ligger inn til blåbærskog med gran og bjørk
#>   side_5_note krypende_vier_dekning
#> 1        <NA>                    NA
#> 2        <NA>                    NA
#> 3        <NA>                    NA
#> 4        <NA>                    NA
#> 5        <NA>                    NA
#> 6        <NA>                    NA
#>   ikke_krypende_vier_dekning vedplanter_total_dekning
#> 1                         NA                       45
#> 2                         NA                       75
#> 3                         NA                       40
#> 4                         NA                       20
#> 5                         NA                       30
#> 6                         NA                       70
#>   busker_dekning tresjikt_dekning treslag_registrert
#> 1              5             25.0               <NA>
#> 2              1              0.1               <NA>
#> 3             15              5.0               <NA>
#> 4              3             15.0               <NA>
#> 5              1             40.0               <NA>
#> 6             10             12.0               <NA>
#>   roesslyng_dekning roesslyngblad pa_dekning pa_note
#> 1                NA          <NA>         NA    <NA>
#> 2                NA          <NA>         NA    <NA>
#> 3                NA          <NA>         NA    <NA>
#> 4                NA          <NA>         NA    <NA>
#> 5                NA          <NA>         NA    <NA>
#> 6                NA          <NA>         NA    <NA>
#>   pa_registrert fa_total_dekning fa_registrert
#> 1          <NA>                0          <NA>
#> 2          <NA>                0          <NA>
#> 3          <NA>                0          <NA>
#> 4          <NA>                0          <NA>
#> 5          <NA>                0          <NA>
#> 6          <NA>                0          <NA>
#>   kommentar_250m2_flate klokkeslett_slutt
#> 1                  <NA>             13:50
#> 2                  <NA>             17:12
#> 3                  <NA>             16:14
#> 4                  <NA>             14:41
#> 5                  <NA>             14:36
#> 6                  <NA>             18:32
#>                                                                                             vedlegg_url
#> 1 https://nin-felles-test.miljodirektoratet.no/api/Overvaking/list/a24a765b-a1b4-4af7-a1b9-a4a3f61f6295
#> 2 https://nin-felles-test.miljodirektoratet.no/api/Overvaking/list/67becf0e-aa0c-4413-8d9d-34f1662d4ac9
#> 3 https://nin-felles-test.miljodirektoratet.no/api/Overvaking/list/628b2427-2d0d-4173-83d5-742f63aa2861
#> 4 https://nin-felles-test.miljodirektoratet.no/api/Overvaking/list/f30b90bb-cf0c-4ae2-bab1-5d74497c8083
#> 5 https://nin-felles-test.miljodirektoratet.no/api/Overvaking/list/353e09df-4a2c-4b48-ab34-9e03935e9cab
#> 6 https://nin-felles-test.miljodirektoratet.no/api/Overvaking/list/006b784e-9024-40e7-8084-498884d4f81b
#>                    creator        creationdate
#> 1 linvas_miljodirektoratet 2019-10-20 14:35:20
#> 2 liting_miljodirektoratet 2019-09-10 20:47:12
#> 3 chrpot_miljodirektoratet 2019-09-09 11:02:15
#> 4 vegbak_miljodirektoratet 2019-11-17 22:03:56
#> 5 vegbak_miljodirektoratet 2019-11-17 22:04:05
#> 6 chrpot_miljodirektoratet 2019-09-09 11:11:04
#>                     editor            editdate
#> 1 linvas_miljodirektoratet 2019-10-20 14:35:20
#> 2 liting_miljodirektoratet 2019-09-10 20:47:12
#> 3 chrpot_miljodirektoratet 2019-09-09 11:02:15
#> 4 vegbak_miljodirektoratet 2019-11-18 00:46:55
#> 5 vegbak_miljodirektoratet 2019-11-18 00:47:04
#> 6 chrpot_miljodirektoratet 2019-09-09 11:11:04
#>   hovedtype_rute CC1       CC2 SS1       SS2       RR1 RR2
#> 1             T2  NA        NA  NA        NA        NA  NA
#> 2             T2  NA 0.8162954  NA 0.8246083 0.0000000  NA
#> 3             T2  NA 0.9264837  NA 0.5876179 0.0000000  NA
#> 4             T2  NA 0.8775111  NA 0.6840271 0.0000000  NA
#> 5             T2  NA 0.9264837  NA 0.6809875 0.6546711  NA
#> 6             T2  NA 0.9264837  NA 0.5876179 0.0000000  NA
#>   Light1    Light2 Nitrogen1 Nitrogen2 Soil_disturbance1
#> 1     NA        NA        NA        NA                NA
#> 2     NA 0.7929370 0.7428571        NA                NA
#> 3     NA 0.7704650 0.7428571        NA                NA
#> 4     NA 0.7339481 0.8142857        NA                NA
#> 5     NA 0.7941517 0.7138996        NA                NA
#> 6     NA 0.7805271 0.7718878        NA                NA
#>   Soil_disturbance2
#> 1                NA
#> 2         0.9733993
#> 3         0.7827381
#> 4         0.6927891
#> 5         0.6603751
#> 6         0.5830765
head(results.natopen.GRUK[['2-sided']])
#>   Flate_ID ObjectID                             GlobalID
#> 1      1-1      145 e9e9a90b-c7ac-482b-a3a8-38fcf0433168
#> 2      1-1      146 0ed450f4-928c-42ec-af40-623d5cdc4e79
#> 3      1-1      147 81f84075-dd64-4745-afa7-9d5fd1bc2e4e
#> 4      1-1      148 fa9915c6-aab8-4afb-9522-57d6b721d412
#> 5      1-1      149 c340e8ab-3dd5-4704-8b92-ee1f7089a4a8
#> 6      1-2      132 92cd0a69-82ba-473b-8daa-75ddeeb39d24
#>   year Klokkeslett_start    Registeringsdato Punkt_ID
#> 1 2020             00:05 2020-06-04 10:00:00       NA
#> 2 2020             00:12 2020-07-04 10:00:00       NA
#> 3 2020             00:22 2020-06-04 10:00:00       NA
#> 4 2020             00:25 2020-06-04 10:00:00       NA
#> 5 2020             00:30 2020-06-04 10:00:00       NA
#> 6 2020             00:46 2020-06-04 10:00:00       NA
#>   uPunkt_ID Værforhold Hovedoekosystem_punkt GPS_type
#> 1     1-1-1        sol         naturlig_apne     <NA>
#> 2     1-1-2        sol         naturlig_apne     <NA>
#> 3     1-1-3        sol         naturlig_apne     <NA>
#> 4     1-1-4        sol         naturlig_apne     <NA>
#> 5     1-1-5        sol         naturlig_apne     <NA>
#> 6     1-2-1        sol         naturlig_apne     <NA>
#>   Nøyaktighet Total dekning % av karplanter registert
#> 1       <0,2m                                    18.5
#> 2       <0,2m                                       0
#> 3       <0,2m                                     6.2
#> 4       <0,2m                                     0.3
#> 5       <0,2m                                    30.9
#> 6       <0,2m                                    50.4
#>   Dekning % av karplanter i feltsjikt Dekning % av moser
#> 1                                18.0                 30
#> 2                                 0.0                  2
#> 3                                 6.0                  2
#> 4                                 0.1                  1
#> 5                                25.0                 65
#> 6                                50.0                  2
#>   ...16 Dekning % av lav Dekning % av strø
#> 1     0                1                99
#> 2     0                0                99
#> 3     0                0                99
#> 4     0                0                99
#> 5     0                5                99
#> 6     0                0                99
#>   Dekning % av bar jord/grus/stein/berg Klokkeslett_slutt
#> 1                                    99              <NA>
#> 2                                    99              <NA>
#> 3                                    99              <NA>
#> 4                                    99              <NA>
#> 5                                    99              <NA>
#> 6                                    99              <NA>
#>   Kommentar til registreringene i kvadratruten ...22
#> 1                                         <NA>   nei
#> 2                                         <NA>   nei
#> 3                                         <NA>   nei
#> 4                                         <NA>   nei
#> 5                                         <NA>   nei
#> 6                                         <NA>   nei
#>   Kommentar til merkingen av ruten Kartleggingsenhet
#> 1                             <NA>            T2-C-7
#> 2                             <NA>            T2-C-7
#> 3                             <NA>            T2-C-7
#> 4                             <NA>            T2-C-7
#> 5                             <NA>            T2-C-7
#> 6                             <NA>            T2-C-7
#>   hovedtype_250m2 ke_beskrivelse_250m2
#> 1            <NA>                 <NA>
#> 2            <NA>                 <NA>
#> 3            <NA>                 <NA>
#> 4            <NA>                 <NA>
#> 5            <NA>                 <NA>
#> 6            <NA>                 <NA>
#>   Spor etter ferdsel med tunge kjøretøy (%)
#> 1                                         0
#> 2                                         0
#> 3                                         0
#> 4                                         0
#> 5                                         0
#> 6                                         0
#>   Spor etter slitasje og slitasjebetinget erosjon (%)
#> 1                                                  20
#> 2                                                  20
#> 3                                                  10
#> 4                                                  50
#> 5                                                   5
#> 6                                                  70
#>   Dekning % av nakent berg
#> 1                       50
#> 2                       95
#> 3                       95
#> 4                       99
#> 5                        2
#> 6                       30
#>   Menneskeskapte objekter i sirkelen?
#> 1                                 nei
#> 2                                 nei
#> 3                                 nei
#> 4                                 nei
#> 5                                 nei
#> 6                                 nei
#>   Hvilke menneskeskapte objekt forekommer?
#> 1                                     <NA>
#> 2                                     <NA>
#> 3                                     <NA>
#> 4                                     <NA>
#> 5                                     <NA>
#> 6                                     <NA>
#>   Kommentar knyttet til naturtyperegistreringene
#> 1                                Nakent berg 80%
#> 2                                Nakent berg 75%
#> 3                  Nakent berg 60%. Sti i ruten.
#> 4                                Nakent berg 75%
#> 5                   Nakent berg 4%. Sti i ruten.
#> 6                                Nakent berg 20%
#>   Total dekning % av vedplanter i feltsjikt
#> 1                                       0.1
#> 2                                       0.0
#> 3                                       1.0
#> 4                                       1.0
#> 5                                       2.0
#> 6                                       1.0
#>   Dekning % av busker i busksjikt Dekning % av tresjikt
#> 1                             0.1                   0.1
#> 2                             1.0                   0.0
#> 3                             2.0                   0.0
#> 4                             1.0                   1.0
#> 5                             5.0                   5.0
#> 6                             0.0                   0.0
#>   Dekning % av problemarter
#> 1                        NA
#> 2                        NA
#> 3                        NA
#> 4                        NA
#> 5                        NA
#> 6                        NA
#>   Kommentar knyttet til registreringen av problemarter
#> 1                                                 <NA>
#> 2                                                 <NA>
#> 3                                                 <NA>
#> 4                                                 <NA>
#> 5                                                 <NA>
#> 6                                                 <NA>
#>   Total dekning % av fremmede arter
#> 1                               0.0
#> 2                               0.1
#> 3                               0.0
#> 4                               0.0
#> 5                               0.1
#> 6                               0.0
#>   Kommentar knyttet til registreringene i sirkelen
#> 1                                             <NA>
#> 2                                             <NA>
#> 3                                             <NA>
#> 4                                             <NA>
#> 5                                             <NA>
#> 6                                             <NA>
#>   Klokkeslett slutt: CreationDate                  Creator
#> 1              00:10     44104.38 matand_miljodirektoratet
#> 2              00:22     44104.39 matand_miljodirektoratet
#> 3              00:26     44104.39 matand_miljodirektoratet
#> 4              00:29     44104.40 matand_miljodirektoratet
#> 5              00:36     44104.40 matand_miljodirektoratet
#> 6              00:54     44103.62 matand_miljodirektoratet
#>   EditDate                   Editor        x        y
#> 1 44104.38 matand_miljodirektoratet 10.73178 59.94771
#> 2 44104.39 matand_miljodirektoratet 10.73180 59.94770
#> 3 44104.39 matand_miljodirektoratet 10.73177 59.94770
#> 4 44104.40 matand_miljodirektoratet 10.73178 59.94769
#> 5 44104.40 matand_miljodirektoratet 10.73183 59.94772
#> 6 44103.62 matand_miljodirektoratet 10.41560 59.83847
#>   tilstandsvurdering.x tilstandsgrunn.x
#> 1                   NA             <NA>
#> 2                   NA             <NA>
#> 3                   NA             <NA>
#> 4                   NA             <NA>
#> 5                   NA             <NA>
#> 6                   NA             <NA>
#>   artsmangfoldvurdering.x lokalitetskvalitet.x
#> 1                      NA                   NA
#> 2                      NA                   NA
#> 3                      NA                   NA
#> 4                      NA                   NA
#> 5                      NA                   NA
#> 6                      NA                   NA
#>   tilstandsvurdering.y tilstandsgrunn.y
#> 1                   NA             <NA>
#> 2                   NA             <NA>
#> 3                   NA             <NA>
#> 4                   NA             <NA>
#> 5                   NA             <NA>
#> 6                   NA             <NA>
#>   artsmangfoldvurdering.y lokalitetskvalitet.y       CC1
#> 1                      NA                   NA 0.8108544
#> 2                      NA                   NA        NA
#> 3                      NA                   NA        NA
#> 4                      NA                   NA 0.0000000
#> 5                      NA                   NA 0.8448384
#> 6                      NA                   NA        NA
#>         CC2       SS1      SS2       RR1       RR2
#> 1        NA 0.5613561       NA        NA 0.5318042
#> 2        NA        NA       NA        NA        NA
#> 3 0.7419305 0.6790290       NA        NA 0.9706229
#> 4        NA 0.3245936       NA        NA 0.2248923
#> 5        NA        NA 0.839074 0.9666974        NA
#> 6 0.7960141 0.5502071       NA        NA 0.7344459
#>      Light1     Light2 Nitrogen1 Nitrogen2
#> 1        NA 0.01480191        NA 0.8253947
#> 2        NA         NA        NA        NA
#> 3        NA 0.60200336        NA 0.5797957
#> 4 0.9756365         NA        NA 0.5218162
#> 5 0.8545689         NA 0.9339477        NA
#> 6 0.8925407         NA        NA 0.6551686
#>   Soil_disturbance1 Soil_disturbance2
#> 1                NA         0.6609490
#> 2                NA                NA
#> 3         0.9346969                NA
#> 4                NA         0.3408431
#> 5         0.5025059                NA
#> 6         0.7122831                NA

8.7.1.2 Scaled value analyses

In order to visualize the results we need to rearrange the results-objects from wide to long format (note that there is both a lower and an upper condition indicator for each of the functional plant indicators).

#### plotting scaled values by main ecosystem type ####
## continuing with 2-sided
res.natopen.ANO <- results.natopen.ANO[['2-sided']]

# make long version of the scaled value part
res.natopen.ANO <-
  res.natopen.ANO %>% 
  pivot_longer(
    cols = c("CC1","CC2",
             "SS1","SS2",
             "RR1","RR2",
             "Light1","Light2",
             "Nitrogen1","Nitrogen2",
             "Soil_disturbance1","Soil_disturbance2"),
    names_to = "fp_ind",
    values_to = "scaled_value",
    values_drop_na = FALSE
  )

# add original values as well
res.natopen.ANO <- 
  res.natopen.ANO %>% add_column(original = results.natopen.ANO[['original']] %>% 
                               pivot_longer(
                                 cols = c("CC1","CC2",
                                          "SS1","SS2",
                                          "RR1","RR2",
                                          "Light1","Light2",
                                          "Nitrogen1","Nitrogen2",
                                          "Soil_disturbance1","Soil_disturbance2"),
                                 names_to = NULL,
                                 values_to = "original",
                                 values_drop_na = FALSE
                               ) %>%
                               pull(original)
  )

# similarly for GRUK
res.natopen.GRUK <- results.natopen.GRUK[['2-sided']]

# make long version of the scaled value part
res.natopen.GRUK <-
  res.natopen.GRUK %>% 
  pivot_longer(
    cols = c("CC1","CC2",
             "SS1","SS2",
             "RR1","RR2",
             "Light1","Light2",
             "Nitrogen1","Nitrogen2",
             "Soil_disturbance1","Soil_disturbance2"),
    names_to = "fp_ind",
    values_to = "scaled_value",
    values_drop_na = FALSE
  )

# add original values as well
res.natopen.GRUK <- 
  res.natopen.GRUK %>% add_column(original = results.natopen.GRUK[['original']] %>% 
                                   pivot_longer(
                                     cols = c("CC1","CC2",
                                              "SS1","SS2",
                                              "RR1","RR2",
                                              "Light1","Light2",
                                              "Nitrogen1","Nitrogen2",
                                              "Soil_disturbance1","Soil_disturbance2"),
                                     names_to = NULL,
                                     values_to = "original",
                                     values_drop_na = FALSE
                                   ) %>%
                                   pull(original)
  )

8.7.2 Ecosystem sub-types

And we can show the resulting scaled values as Violin plots for each indicator and main ecosystem type The ANO results show a high frequency of too low CSR-R values (CSR-R1) and Soil disturbance while also showing signs of higher than expected competition (CSR-C2), which indicates that a number of naturally open areas are changing in their dominance structure and physical stability. The GRUK data show a generally large spread of scaled values, but the violin plots (the shapes indicate the relative amount of observations across the y-axis) suggest that there is a number of sites with too high nitrogen (Nitrogen2), and some sites with too much disturbance (CSR-R2) and light (Light2). Many GRUK sites are popular outdoor locations with the local population, which could increase disturbance and thus cause deviations towards high CSR-R values (CSR-R2). Increased nitrogen may be an effect of alien species, which the GRUK data records as a major pressure and problem for many monitoring sites.

colnames(res.natopen.GRUK)[38] <- "fremmedartsdekning"
ggplot(res.natopen.GRUK[res.natopen.GRUK$fp_ind=="Nitrogen2",], aes(x=fremmedartsdekning, y=scaled_value)) +
  geom_point() +
  xlab("Alien species cover (%)") + ylab("Scaled Nitrogen2 value (GRUK data)")
#> Warning: Removed 347 rows containing missing values
#> (`geom_point()`).
And indeed, we can see that very high alien species cover predicts almost only poor scores in the Nitrogen2 indicator.

8.7.3 Indicator index maps

We can also show the results as a map, for instance for CSR-R1 (the lower ruderal/disturbance indicator) for ANO and Nitrogen2 (the upper nitrogen indicator) for GRUK, either by directly plotting the data onto the map…

#> Reading layer `outlineOfNorway_EPSG25833' from data source 
#>   `/data/Egenutvikling/41001581_egenutvikling_anders_kolstad/github/ecosystemCondition_v2/data/outlineOfNorway_EPSG25833.shp' 
#>   using driver `ESRI Shapefile'
#> Simple feature collection with 1 feature and 2 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -113472.7 ymin: 6448359 xmax: 1114618 ymax: 7939917
#> Projected CRS: ETRS89 / UTM zone 33N
#> Reading layer `regions' from data source 
#>   `/data/Egenutvikling/41001581_egenutvikling_anders_kolstad/github/ecosystemCondition_v2/data/regions.shp' 
#>   using driver `ESRI Shapefile'
#> Simple feature collection with 5 features and 2 fields
#> Geometry type: POLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -99551.21 ymin: 6426048 xmax: 1121941 ymax: 7962744
#> Projected CRS: ETRS89 / UTM zone 33N

For GRUK we can zoom in on the area around the Oslofjord…

boks <- st_bbox(c(xmin = 10.3, xmax = 10.8, ymax = 59.95, ymin = 59.4), crs = st_crs(4326))

tm_shape(regnor,bbox=boks) +
  tm_fill('GID_0', labels="", title="", legend.show = FALSE) + 
  tm_borders() +
  tm_shape(res.natopen.GRUK2) +
  tm_dots('Nitrogen2',midpoint=NA, palette=tmaptools::get_brewer_pal("YlOrRd", 7, plot = FALSE), scale=3, legend.show = FALSE) + # 
  tm_layout(main.title = "Nitrogen index (upper), natopen GRUK",legend.position = c("right", "bottom"), main.title.size=1.2) + 
  tm_add_legend(type = "fill", 
                col = c(tmaptools::get_brewer_pal("YlOrRd", 7, plot = FALSE),'grey'),
                labels = c("0.3 - 0.4", "0.4 - 0.5", "0.5 - 0.6", "0.6 - 0.7", 
                           "0.7 - 0.8", "0.8 - 0.9", "0.9 - 1.0", "NA"),
                title = "index values")
…but for ANO the colors and values of the data points on the map are hard to make out.

8.7.4 Regions - maps and statistics

Alternatively we can calculate and show the region-wise means and their related standard errors. But note that calculating a simple mean would be inappropriate for these data. This is because: (i) the scaled data are bound between 0 and 1, and thus follow a beta-distribution rather than a Gaussian one (ii) both the ANO and the GRUK datasets have a nested structure

Therefore, we need to (i) use a beta-model, that (ii) can account for the nested structure of the data. Here, we apply the following function using either a glmmTMB null-model with a beta-distribution, logit link, and the nesting as a random intercept, or a simple betareg null-model with logit link if the nesting is not extensive enough for a mixed model.


expit <- function(L) exp(L) / (1+exp(L)) # since the beta-models use a logit link, we need to calculate the estimates back to the identity scale

# the function performs a glmmTMB if there's >= 5 random levels in the nesting structure
# if that is not the case, then the function performs a betareg if theres >= 2 observations
# if that is not the case either, then the function returns the value of the single observation with NA standard error

indmean.beta <- function(df) {

  st_geometry(df) <- NULL
  colnames(df) <- c("y","ran")
  
  if ( nrow(df[!is.na(df[,1]),]) >= 2 ) {
    
    if ( length(unique(df[!is.na(df[,1]),2])) >=5 ) {
      
      mod1 <- glmmTMB(y ~ 1 +(1|ran), family=beta_family(), data=df)
      
      return(c(
        expit(summary( mod1 )$coefficients$cond[1]),
        
        expit( summary( mod1 )$coefficients$cond[1] + 
                 summary( mod1 )$coefficients$cond[2] )-
          expit( summary( mod1 )$coefficients$cond[1] ),
        
        nrow(df[!is.na(df$y),]),
        summary( mod1 )$coefficients$cond[1],
        summary( mod1 )$coefficients$cond[2]
      ))
      
    } else {
      
      mod2 <- betareg(y ~ 1, data=df)
      
      return(c(
        expit(summary( mod2 )$coefficients$mean[1]),
        expit( summary( mod2 )$coefficients$mean[1] + 
                 summary( mod2 )$coefficients$mean[2] )-
          expit( summary( mod2 )$coefficients$mean[1] ),
        nrow(df[!is.na(df$y),]),
        summary( mod2 )$coefficients$mean[1],
        summary( mod2 )$coefficients$mean[2]
      ))
      
    }
    
  } else {
    
    return(c(df$y,NA,1,NA,NA))
    
  }

}
# we have to join the ANO and GRUK results spatial objects with the Norway and region mask
res.natopen.ANO2 = st_join(res.natopen.ANO2, regnor, left = TRUE)
res.natopen.GRUK2 = st_join(res.natopen.GRUK2, regnor, left = TRUE)
# we check if all there's any sitethat did not get a region assigned
nrow(res.natopen.ANO2[is.na(res.natopen.ANO2$region),]) # no NA's for ANO
#> [1] 0
nrow(res.natopen.GRUK2[is.na(res.natopen.GRUK2$region),]) # some points didn't get assigned to a region. Why?
#> [1] 303

tm_shape(regnor, bbox = boks) +
  tm_fill('GID_0', labels="", title="", legend.show = FALSE) + 
  tm_borders() +
  tm_shape(res.natopen.GRUK2[is.na(res.natopen.GRUK2$region),]) +
  tm_dots('Nitrogen2',midpoint=NA, palette=tmaptools::get_brewer_pal("YlOrRd", 7, plot = FALSE), scale=2, legend.show = FALSE) + # 
  tm_layout(main.title = "Nitrogen index (upper), natopen GRUK",legend.position = c("right", "bottom"), main.title.size=1.2) + 
  tm_add_legend(type = "fill", 
                col = c(tmaptools::get_brewer_pal("YlOrRd", 7, plot = FALSE),'grey'),
                labels = c("0.3 - 0.4", "0.4 - 0.5", "0.5 - 0.6", "0.6 - 0.7", 
                           "0.7 - 0.8", "0.8 - 0.9", "0.9 - 1.0", "NA"),
                title = "index values")
# they seem to lie in water
# all sites but the southernmost one are in Eastern Norway, the remaining one in Southern Norway
summary(res.natopen.GRUK2[is.na(res.natopen.GRUK2$region),"y"])
#>        y                  geometry  
#>  Min.   : 0.00   POINT        :303  
#>  1st Qu.:59.83   epsg:25833   :  0  
#>  Median :59.87   +proj=utm ...:  0  
#>  Mean   :58.86                      
#>  3rd Qu.:59.89                      
#>  Max.   :59.91
res.natopen.GRUK2[is.na(res.natopen.GRUK2$region) & res.natopen.GRUK2$y<59.83,c("y","Flate_ID")] # site 123-4 is in Southern Norway
#> Simple feature collection with 75 features and 2 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: -1188659 ymin: 0 xmax: 253611.6 ymax: 6639450
#> Projected CRS: ETRS89 / UTM zone 33N
#> First 10 features:
#>            y Flate_ID                 geometry
#> 117 59.45180    123-4 POINT (241129.9 6599256)
#> 118 59.45212    123-4 POINT (241110.1 6599293)
#> 120 59.45194    123-4 POINT (241129.7 6599272)
#> 121 59.45205    123-4 POINT (241099.7 6599286)
#> 122 59.45185    123-4 POINT (241130.3 6599262)
#> 123 59.45191    123-4 POINT (241110.9 6599270)
#> 124 59.45200    123-4   POINT (241113 6599280)
#> 125 59.45203    123-4 POINT (241117.6 6599283)
#> 474 59.81732     25-1 POINT (253188.3 6639270)
#> 475 59.81733     25-1 POINT (253168.3 6639273)
res.natopen.GRUK2[res.natopen.GRUK2$Flate_ID=="123-4","region"] <- "Southern Norway"
# and all the other region=NA observations are in Eastern Norway
res.natopen.GRUK2[is.na(res.natopen.GRUK2$region),"region"] <- "Eastern Norway"
nrow(res.natopen.GRUK2[is.na(res.natopen.GRUK2$region),]) # no NA's left
#> [1] 0

# now we can calculate regionwise means and standard errors with beta-regression null-models
# note that beta-models cannot handle observations that are exactly 0 or 1
res.natopen.ANO2$RR1[res.natopen.ANO2$RR1==1] <- 0.999
res.natopen.ANO2$RR1[res.natopen.ANO2$RR1==0] <- 0.001
res.natopen.GRUK2$Nitrogen2[res.natopen.GRUK2$Nitrogen2==1] <- 0.999
res.natopen.GRUK2$Nitrogen2[res.natopen.GRUK2$Nitrogen2==0] <- 0.001

regnor <- regnor %>%
  mutate(
    RR1.ANO.reg.mean = c(indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Northern Norway",c("RR1","ano_flate_id")])[1],
                         indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Central Norway",c("RR1","ano_flate_id")])[1],
                         indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Eastern Norway",c("RR1","ano_flate_id")])[1],
                         indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Western Norway",c("RR1","ano_flate_id")])[1],
                         indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Southern Norway",c("RR1","ano_flate_id")])[1]
    ),
    RR1.ANO.reg.se = c(indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Northern Norway",c("RR1","ano_flate_id")])[2]*2,
                       indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Central Norway",c("RR1","ano_flate_id")])[2]*2,
                       indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Eastern Norway",c("RR1","ano_flate_id")])[2]*2,
                       indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Western Norway",c("RR1","ano_flate_id")])[2]*2,
                       indmean.beta(df=res.natopen.ANO2[res.natopen.ANO2$region=="Southern Norway",c("RR1","ano_flate_id")])[2]*2
    ),
    RR1.ANO.reg.n = c(nrow(res.natopen.ANO2[res.natopen.ANO2$region=="Northern Norway" & !is.na(res.natopen.ANO2$RR1),]),
                      nrow(res.natopen.ANO2[res.natopen.ANO2$region=="Central Norway" & !is.na(res.natopen.ANO2$RR1),]),
                      nrow(res.natopen.ANO2[res.natopen.ANO2$region=="Eastern Norway" & !is.na(res.natopen.ANO2$RR1),]),
                      nrow(res.natopen.ANO2[res.natopen.ANO2$region=="Western Norway" & !is.na(res.natopen.ANO2$RR1),]),
                      nrow(res.natopen.ANO2[res.natopen.ANO2$region=="Southern Norway" & !is.na(res.natopen.ANO2$RR1),])
    ),
    Nitrogen2.GRUK.reg.mean = c(indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Northern Norway",c("Nitrogen2","Flate_ID")])[1],
                                indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Central Norway",c("Nitrogen2","Flate_ID")])[1],
                                indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Eastern Norway",c("Nitrogen2","Flate_ID")])[1],
                                indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Western Norway",c("Nitrogen2","Flate_ID")])[1],
                                indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Southern Norway",c("Nitrogen2","Flate_ID")])[1]
    ),
    Nitrogen2.GRUK.reg.se = c(indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Northern Norway",c("Nitrogen2","Flate_ID")])[2]*2,
                              indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Central Norway",c("Nitrogen2","Flate_ID")])[2]*2,
                              indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Eastern Norway",c("Nitrogen2","Flate_ID")])[2]*2,
                              indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Western Norway",c("Nitrogen2","Flate_ID")])[2]*2,
                              indmean.beta(df=res.natopen.GRUK2[res.natopen.GRUK2$region=="Southern Norway",c("Nitrogen2","Flate_ID")])[2]*2
    ),
    Nitrogen2.GRUK.reg.n = c(0,
                             0,
                             nrow(res.natopen.GRUK2[res.natopen.GRUK2$region=="Eastern Norway" & !is.na(res.natopen.GRUK2$Nitrogen2),]),
                             0,
                             nrow(res.natopen.GRUK2[res.natopen.GRUK2$region=="Southern Norway" & !is.na(res.natopen.GRUK2$Nitrogen2),])
    )
  )


## scaled value maps for CSR-R1 (lower indicator), ANO
# mean
tm_shape(regnor) +
  tm_polygons(col="RR1.ANO.reg.mean", title="CSR-R (lower), mean", style="quantile", palette=rev(get_brewer_pal(palette="OrRd", n=5, plot=FALSE))) +
  tm_text("RR1.ANO.reg.n",col="black",bg.color="grey")
Mean index value by region for the lower CSR-R indicator (i.e. index shows deviations towards less ruderal species) from the ANO monitoring data. Numbers in grey fields show the number of observations in the respective region.
# se
tm_shape(regnor) +
  tm_polygons(col="RR1.ANO.reg.se", title="CSR-R (lower)", style="quantile", palette=(get_brewer_pal(palette="OrRd", n=5, plot=FALSE))) +
  tm_text("RR1.ANO.reg.n",col="black",bg.color="grey")
Standard error to the mean index value by region for the lower CSR-R indicator from the ANO monitoring data. Numbers in grey fields show the number of observations in the respective region.

And here are the corresponding maps for the upper Nitrogen indicator in the GRUK data:

## scaled value maps for Nitrogen2 (upper indicator), ASO
# mean
tm_shape(regnor) +
  tm_polygons(col="Nitrogen2.GRUK.reg.mean", title="Nitrogen (upper), mean", style="quantile", palette=rev(get_brewer_pal(palette="OrRd", n=5, plot=FALSE))) +
  tm_text("Nitrogen2.GRUK.reg.n",col="black",bg.color="grey")
Mean index value by region for the upper Nitrogen indicator (i.e. index shows deviations towards increased Nitrogen affinity in the plant community) from the GRUK monitoring data. Numbers in grey fields show the number of observations in the respective region.
# se
tm_shape(regnor) +
  tm_polygons(col="Nitrogen2.GRUK.reg.se", title="Nitrogen (upper), 2 SE", style="quantile", palette=(get_brewer_pal(palette="OrRd", n=5, plot=FALSE))) +
  tm_text("Nitrogen2.GRUK.reg.n",col="black",bg.color="grey")
Standard error to the mean index value by region for the upper Nitrogen indicator from the GRUK monitoring data. Numbers in grey fields show the number of observations in the respective region.

8.7.4.1 continue here

8.7.4.2 Unscaled values vs. reference

We can also compare the unscaled values to the reference distribution in order to identify ecosystem types and functional plant indicators showing a deviation from the expectation. Since CSR-R for ANO and nitrogen for GRUK show some deviations, we exemplify this with these indicators for unscaled values.

CSR-R, ANO:

#summary(res.natopen.ANO[!is.na(res.natopen.ANO$original),]$kartleggingsenhet_1m2)
#sort(unique(res.natopen.ANO$kartleggingsenhet_1m2))
# 8 NiN-types with data to plot

par(mfrow=c(2,4))
for ( i in sort(unique(res.natopen.ANO$kartleggingsenhet_1m2))[c(1,6,7,10,12,13,14,15)] ) {
  
  tryCatch({
    
    plot(density( as.matrix(natopen.ref.cov[['RR']][,i]) ,na.rm=T),
         xlim=c(0,1), ylim=c(0,10), type="l", main=i,xlab='CSR-R value')
    points(res.natopen.ANO[res.natopen.ANO$fp_ind=="RR1" & res.natopen.ANO$kartleggingsenhet_1m2==i,]$original,
           rep(0,length(res.natopen.ANO[res.natopen.ANO$fp_ind=="RR1" & res.natopen.ANO$kartleggingsenhet_1m2==i,]$original)),
           col="red")
    points(density(res.natopen.ANO[res.natopen.ANO$fp_ind=="RR1" & res.natopen.ANO$kartleggingsenhet_1m2==i,]$original,na.rm=T),
           type="l", col="red")

    
  }, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
  
}
#> ERROR : need at least 2 points to select a bandwidth automatically
#> ERROR : need at least 2 points to select a bandwidth automatically
#> ERROR : need at least 2 points to select a bandwidth automatically
legend("topright", legend=c("reference","field data"), pch=c(NULL,1), lty=1, col=c("black","red"),bty="n", cex=1)

Nitrogen, GRUK


# only two NiN types in GRUK, T2-C-7 and T2-C-8
par(mfrow=c(1,2))
for ( i in unique(res.natopen.GRUK$Kartleggingsenhet) ) {
  
  tryCatch({
    
    plot(density( as.matrix(natopen.ref.cov[['Nitrogen']][,i]) ,na.rm=T),
         xlim=c(1,9), ylim=c(0,2), type="l", main=i,xlab='Nitrogen value')
    points(res.natopen.GRUK[res.natopen.GRUK$fp_ind=="Nitrogen1" & res.natopen.GRUK$Kartleggingsenhet==i,]$original,
           rep(0,length(res.natopen.GRUK[res.natopen.GRUK$fp_ind=="Nitrogen1" & res.natopen.GRUK$Kartleggingsenhet==i,]$original)),
           col="red")
    points(density(res.natopen.GRUK[res.natopen.GRUK$fp_ind=="Nitrogen1" & res.natopen.GRUK$Kartleggingsenhet==i,]$original,na.rm=T),
           type="l", col="red")

    
  }, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
  
}
legend("topright", legend=c("reference","field data"), pch=c(NA,1), lty=1, col=c("black","red"), cex=1)
The GRUK figure shows that the distributions for the plant communities’ nitrogen affinity in the limestone rich T2-areas (åpen grunnlendt mark) around Oslofjord are shifted towards higher nitrogen affinity. The ANO figure shows shifts towards less ruderal strategy in plant communities limestone poor T2-areas as well as T12 (strandeng) and T16 (rasmarkhei, -eng) types.

8.7.5 Eksport file (final product)