Package index
-
dist_decay()threshold_decay()step_decay()bartlett_decay()tent_decay()linear_decay()gaussian_decay()half_norm_decay()exp_decay() - Zone of Influence (ZOI) functions
-
plot_zoi1d() - Plot the functions for the nearest and cumulative zone of influence in 1 dimension
-
calc_zoi() - Calculates the zone of influence from the nearest feature and the cumulative zone of influence of multiple features
-
calc_zoi_cumulative() - Calculate the cumulative zone of influence of multiple features
-
calc_zoi_nearest() - Calculate the zone of influence from the nearest feature
-
calc_zoi_sql() - Compute Zone of Influence for points and annotate them to points using SQL
-
filter_create() - Create filters or kernel matrices for raster neighborhood analyses
-
filter_na_strata() - Remove missing values and ensure case-control per stratum
-
filter_save() - Save kernel/filter matrix to use outside R
-
add_zoi_formula() - Adds ZOI radii to formula
-
add_zoi_layers() - Create ZOI layer names as strings for data annotation
-
explore_blocks() - Explore hierarchical blocks after sampling or spatial stratification
-
explore_blocks_pre() - Explore potential hierarchical blocks before sampling or spatial stratification
-
spat_strat() - Preparing data for spatially stratified cross‐validation schemes
-
create_resamples() - Create samples for fitting, calibrating, and validating models
Estimating ZOI - fit models
Functions to fit RSF and SSF and estimate ZOI using penalized regression
-
filter_na_strata() - Remove missing values and ensure case-control per stratum
-
extract_response_strata() - Separates elements in a statistical formula
-
net_clogit()net_ssf()net_issf() - Fits a conditional logistic regression/SSF/iSSF using glmnet
-
net_logit()net_rsf() - Fits a logistic regression/RSF using glmnet
-
fit_net_clogit()fit_net_ssf()fit_net_issf()fit_net_logit()fit_net_rsf()grouped_func() - Fits a conditional logistic regression/SSF/iSSF with penalized regression using glmnet in a train-validate-test setup
-
bag_fit_net_clogit()bag_fit_net_logit() - Fit a bag of conditional logistic regression/SSF/iSSF models with penalized regression in a train-validate-test setup
-
bag_load_models() - Load a series of files output of fit_net_clogit models and put them on a bag
-
bag_models()w_strech_maxmin_squared()w_strech_max_squared()score2weight_mean()score2weight_min_mean()score2weight_invmean()score2weight_min_invmean() - Summary of a bag of models
-
truncate_bag() - Truncate bag to avoid weirdness in the model
-
conditionalBoyce()conditionalSomersD()conditionalAUC()AUC()coxnet.deviance()Cindex() - Computes the conditional Boyce index for model evaluation
-
kernel_prediction() - Prediction based only on step length terms
Estimating ZOI - interpret and visualize models
Functions to help interpreting parameters and visualizing cumulative impacts
-
predict() - Prediction of a bag of models to new data
-
zoi_from_curve() - Get estimates of zone of influence (ZOI) from response curves
-
plot_importance() - Plot variable importance
-
variable_importance() - Computes variable importance
-
plot_coef() - Plot the coefficients of bags of models
-
plot_response() - Plot responses from a bag of models
-
bag_predict_spat()bag_predict_spat_vars() - Predict bag of models in space
-
weirdness() - Computes ecological weirdness for a fitted model or it estimated coefficients
-
rescale_coefficients() - Rescale standardized coefficients back to their original range after model fitting
Raster processing ancillary functions
GRASS GIS ancillary functions to process rasters and prepare inputs for computing zones of influence
-
grass_binarize() - Binarize continuous raster maps
-
grass_find_layer() - Find layers within GRASS GIS with multiple patterns
-
grass_v2rast_count() - Rasterizes a vector counting the number of features in each pixel
-
raster_rescale() - Rescale raster values
-
set_points() - Simulate points in a landscape
-
set_points_from_raster() - Simulate points using input raster as weights
-
set_points_sample() - Simulate regular or random points in 2D
-
isolation()mean_isolation() - Isolation and mean isolation of points in space
-
reindeer - GPS positions for wild reindeer in Norway.
-
reindeer_area.gpkg - Reindeer area: a polygon vector data for the Setesdal Austhei reindeer herding area
-
reindeer_cabins.gpkg - Cabins vector data for the reindeer area
-
reindeer_roads_private.gpkg - Private roads vector data for the reindeer area
-
reindeer_roads_public.gpkg - Public roads vector data for the reindeer area
-
reindeer_rsf - Annotated data of wild reindeer in Norway, prepared for point resource-selection analysis.
-
reindeer_ssf - Annotated data of wild reindeer in Norway, prepared for step-selection analysis.
-
rast_predictors_hardanger_500m.tif - Predictor environmental variables for the Hardangervidda wild reindeer area in Norway
-
sample_area_cabins.tif - Cabin presence raster data for the sample area
-
sample_area_cabins_count.tif - Cabin count raster data for the sample area
-
sample_area_roads.tif - Road raster data for the sample area
-
sample_area.gpkg - Sample area: a polygon vector data
-
sample_area_cabins.gpkg - Cabins vector data for the sample area
-
sample_area_roads.gpkg - Road vector data for the sample area