Package index
-
dist_decay()
threshold_decay()
step_decay()
bartlett_decay()
tent_decay()
linear_decay()
gaussian_decay()
half_norm_decay()
exp_decay()
- Zone of Influence (ZOI) functions
-
plot_zoi1d()
- Plot the functions for the nearest and cumulative zone of influence in 1 dimension
-
calc_zoi()
- Calculates the zone of influence from the nearest feature and the cumulative zone of influence of multiple features
-
calc_zoi_cumulative()
- Calculate the cumulative zone of influence of multiple features
-
calc_zoi_nearest()
- Calculate the zone of influence from the nearest feature
-
calc_zoi_sql()
- Compute Zone of Influence for points and annotate them to points using SQL
-
filter_create()
- Create filters or kernel matrices for raster neighborhood analyses
-
filter_na_strata()
- Remove missing values and ensure case-control per stratum
-
filter_save()
- Save kernel/filter matrix to use outside R
-
add_zoi_formula()
- Adds ZOI radii to formula
-
add_zoi_layers()
- Create ZOI layer names as strings for data annotation
-
explore_blocks()
- Explore hierarchical blocks after sampling or spatial stratification
-
explore_blocks_pre()
- Explore potential hierarchical blocks before sampling or spatial stratification
-
spat_strat()
- Preparing data for spatially stratified cross‐validation schemes
-
create_resamples()
- Create samples for fitting, calibrating, and validating models
Estimating ZOI - fit models
Functions to fit RSF and SSF and estimate ZOI using penalized regression
-
filter_na_strata()
- Remove missing values and ensure case-control per stratum
-
extract_response_strata()
- Separates elements in a statistical formula
-
net_clogit()
net_ssf()
net_issf()
- Fits a conditional logistic regression/SSF/iSSF using glmnet
-
net_logit()
net_rsf()
- Fits a logistic regression/RSF using glmnet
-
fit_net_clogit()
fit_net_ssf()
fit_net_issf()
fit_net_logit()
fit_net_rsf()
- Fits a conditional logistic regression/SSF/iSSF with penalized regression using glmnet in a train-validate-test setup
-
bag_fit_net_clogit()
bag_fit_net_logit()
- Fit a bag of conditional logistic regression/SSF/iSSF models with penalized regression in a train-validate-test setup
-
bag_load_models()
- Load a series of files output of fit_net_clogit models and put them on a bag
-
bag_models()
w_strech_maxmin_squared()
w_strech_max_squared()
score2weight_mean()
score2weight_min_mean()
score2weight_invmean()
score2weight_min_invmean()
- Summary of a bag of models
-
conditionalBoyce()
conditionalSomersD()
conditionalAUC()
AUC()
coxnet.deviance()
Cindex()
- Computes the conditional Boyce index for model evaluation
-
kernel_prediction()
- Prediction based only on step length terms
-
pretty_seq()
- Set sampling parameters
Estimating ZOI - interpret and visualize models
Functions to help interpreting parameters and visualizing cumulative impacts
-
predict()
- Prediction of a bag of models to new data
-
plot_importance()
- Plot variable importance
-
variable_importance()
- Computes variable importance
-
plot_coef()
- Plot the coefficients of bags of models
-
plot_response()
- Plot responses from a bag of models
-
bag_predict_spat()
bag_predict_spat_vars()
- Predict bag of models in space
-
rescale_coefficients()
- Rescale standardized coefficients back to their original range after model fitting
-
create_linear_feature_zoi()
- Creates a line feature and gets the value of their zone of influence on locations over the feature
Raster processing ancillary functions
GRASS GIS ancillary functions to process rasters and prepare inputs for computing zones of influence
-
grass_binarize()
- Binarize continuous raster maps
-
grass_find_layer()
- Find layers within GRASS GIS with multiple patterns
-
grass_v2rast_count()
- Rasterizes a vector counting the number of features in each pixel
-
raster_rescale()
- Rescale raster values
-
set_points()
- Simulate points in a landscape
-
set_points_from_raster()
- Simulate points using input raster as weights
-
set_points_sample()
- Simulate regular or random points in 2D
-
isolation()
mean_isolation()
- Isolation and mean isolation of points in space
-
reindeer
- GPS positions for wild reindeer in Norway.
-
reindeer_area.gpkg
- Reindeer area: a polygon vector data for the Setesdal Austhei reindeer herding area
-
reindeer_cabins.gpkg
- Cabins vector data for the reindeer area
-
reindeer_roads_private.gpkg
- Private roads vector data for the reindeer area
-
reindeer_roads_public.gpkg
- Public roads vector data for the reindeer area
-
reindeer_rsf
- Annotated data of wild reindeer in Norway, prepared for point resource-selection analysis.
-
reindeer_ssf
- Annotated data of wild reindeer in Norway, prepared for step-selection analysis.
-
rast_predictors_hardanger_500.tif
- Predictor environmental variables for the Hardangervidda wild reindeer area in Norway
-
sample_area_cabins.tif
- Cabin presence raster data for the sample area
-
sample_area_cabins_count.tif
- Cabin count raster data for the sample area
-
sample_area_roads.tif
- Road raster data for the sample area
-
sample_area.gpkg
- Sample area: a polygon vector data
-
sample_area_cabins.gpkg
- Cabins vector data for the sample area
-
sample_area_roads.gpkg
- Road vector data for the sample area